Cargando…
Novel oligopeptide nanoprobe for targeted cancer cell imaging
Here we designed and constructed a tryptophan-phenylalanine-phenylalanine-tryptophan (WFFW) tetrapeptide, which generated photostable and tunable fluorescence emission signals from 340 nm to 500 nm. The WFFW tetrapeptide could self-assemble into a spherical nanostructure with enhanced fluorescence i...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9085486/ https://www.ncbi.nlm.nih.gov/pubmed/35548769 http://dx.doi.org/10.1039/c8ra06034g |
Sumario: | Here we designed and constructed a tryptophan-phenylalanine-phenylalanine-tryptophan (WFFW) tetrapeptide, which generated photostable and tunable fluorescence emission signals from 340 nm to 500 nm. The WFFW tetrapeptide could self-assemble into a spherical nanostructure with enhanced fluorescence intensity. Driven by π–π stacking and hydrogen bond interaction, WFFW co-assembled with arginine-glycine-aspartic acid (RGD) modified WFFW to form a cancer-targeted fluorescent nanoprobe, which could selectively image the cancer cells. |
---|