Cargando…

Microwave-assisted nanocatalysis: A CuO NPs/rGO composite as an efficient and recyclable catalyst for the Petasis-borono–Mannich reaction

A CuO NP decorated reduced graphene oxide (CuO NPs/rGO) composite was synthesized and characterized using various analytical techniques viz. XRD, TEM, SEM, UV-Vis, FT-IR, EDX, XPS and CV. The activity of the catalyst was probed for the Petasis-Borono–Mannich (PBM) reaction of boronic acids, salicyla...

Descripción completa

Detalles Bibliográficos
Autores principales: Dandia, Anshu, Bansal, Sarika, Sharma, Ruchi, Rathore, Kuldeep S., Parewa, Vijay
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9085516/
https://www.ncbi.nlm.nih.gov/pubmed/35546842
http://dx.doi.org/10.1039/c8ra05203d
Descripción
Sumario:A CuO NP decorated reduced graphene oxide (CuO NPs/rGO) composite was synthesized and characterized using various analytical techniques viz. XRD, TEM, SEM, UV-Vis, FT-IR, EDX, XPS and CV. The activity of the catalyst was probed for the Petasis-Borono–Mannich (PBM) reaction of boronic acids, salicylaldehydes, and amines under microwave irradiation (MW). The CuO NPs/rGO composite works as a catalyst as well as a susceptor and augments the overall ability of the reaction mixture to absorb MW. The synergistic effect of MW and CuO NPs/rGO resulted in an excellent outcome of the reaction as indicated by the high TOF value (3.64 × 10(−3) mol g(−1) min(−1)). The catalytic activity of the CuO NPs/rGO composite was about 12-fold higher under MW compared to the conventional method. The catalyst was recovered by simple filtration and recycled 8 times without significant loss in activity. This atom-economical protocol includes a much milder procedure, and a catalyst benign in nature, does not involve any tedious work-up for purification, and avoids hazardous reagents/byproducts and the target molecules were obtained in good to excellent yields.