Cargando…
Modeling of energy consumption factors for an industrial cement vertical roller mill by SHAP-XGBoost: a "conscious lab" approach
Cement production is one of the most energy-intensive manufacturing industries, and the milling circuit of cement plants consumes around 4% of a year's global electrical energy production. It is well understood that modeling and digitalizing industrial-scale processes would help control product...
Autores principales: | Fatahi, Rasoul, Nasiri, Hamid, Dadfar, Ehsan, Chehreh Chelgani, Saeed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9085744/ https://www.ncbi.nlm.nih.gov/pubmed/35534588 http://dx.doi.org/10.1038/s41598-022-11429-9 |
Ejemplares similares
-
Ventilation Prediction for an Industrial Cement Raw Ball Mill by BNN—A “Conscious Lab” Approach
por: Fatahi, Rasoul, et al.
Publicado: (2021) -
XGBoost-SHAP-based interpretable diagnostic framework for alzheimer’s disease
por: Yi, Fuliang, et al.
Publicado: (2023) -
Explainable SHAP-XGBoost models for in-hospital mortality after myocardial infarction
por: Tarabanis, Constantine, et al.
Publicado: (2023) -
Interpretable predictive model for shield attitude control performance based on XGboost and SHAP
por: Hu, Min, et al.
Publicado: (2022) -
Potential of Coupling Metaheuristics-Optimized-XGBoost and SHAP in Revealing PAHs Environmental Fate
por: Jovanovic, Gordana, et al.
Publicado: (2023)