Cargando…

Human and planetary health implications of negative emissions technologies

Meeting the 1.5 °C target may require removing up to 1,000 Gtonne CO(2) by 2100 with Negative Emissions Technologies (NETs). We evaluate the impacts of Direct Air Capture and Bioenergy with Carbon Capture and Storage (DACCS and BECCS), finding that removing 5.9 Gtonne/year CO(2) can prevent <9·10...

Descripción completa

Detalles Bibliográficos
Autores principales: Cobo, Selene, Galán-Martín, Ángel, Tulus, Victor, Huijbregts, Mark A. J., Guillén-Gosálbez, Gonzalo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9085842/
https://www.ncbi.nlm.nih.gov/pubmed/35534480
http://dx.doi.org/10.1038/s41467-022-30136-7
Descripción
Sumario:Meeting the 1.5 °C target may require removing up to 1,000 Gtonne CO(2) by 2100 with Negative Emissions Technologies (NETs). We evaluate the impacts of Direct Air Capture and Bioenergy with Carbon Capture and Storage (DACCS and BECCS), finding that removing 5.9 Gtonne/year CO(2) can prevent <9·10(2) disability-adjusted life years per million people annually, relative to a baseline without NETs. Avoiding this health burden—similar to that of Parkinson’s—can save substantial externalities (≤148 US$/tonne CO(2)), comparable to the NETs levelized costs. The health co-benefits of BECCS, dependent on the biomass source, can exceed those of DACCS. Although both NETs can help to operate within the climate change and ocean acidification planetary boundaries, they may lead to trade-offs between Earth-system processes. Only DACCS can avert damage to the biosphere integrity without challenging other biophysical limits (impacts ≤2% of the safe operating space). The quantified NETs co-benefits can incentivize their adoption.