Cargando…
Human and planetary health implications of negative emissions technologies
Meeting the 1.5 °C target may require removing up to 1,000 Gtonne CO(2) by 2100 with Negative Emissions Technologies (NETs). We evaluate the impacts of Direct Air Capture and Bioenergy with Carbon Capture and Storage (DACCS and BECCS), finding that removing 5.9 Gtonne/year CO(2) can prevent <9·10...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9085842/ https://www.ncbi.nlm.nih.gov/pubmed/35534480 http://dx.doi.org/10.1038/s41467-022-30136-7 |
_version_ | 1784703907129196544 |
---|---|
author | Cobo, Selene Galán-Martín, Ángel Tulus, Victor Huijbregts, Mark A. J. Guillén-Gosálbez, Gonzalo |
author_facet | Cobo, Selene Galán-Martín, Ángel Tulus, Victor Huijbregts, Mark A. J. Guillén-Gosálbez, Gonzalo |
author_sort | Cobo, Selene |
collection | PubMed |
description | Meeting the 1.5 °C target may require removing up to 1,000 Gtonne CO(2) by 2100 with Negative Emissions Technologies (NETs). We evaluate the impacts of Direct Air Capture and Bioenergy with Carbon Capture and Storage (DACCS and BECCS), finding that removing 5.9 Gtonne/year CO(2) can prevent <9·10(2) disability-adjusted life years per million people annually, relative to a baseline without NETs. Avoiding this health burden—similar to that of Parkinson’s—can save substantial externalities (≤148 US$/tonne CO(2)), comparable to the NETs levelized costs. The health co-benefits of BECCS, dependent on the biomass source, can exceed those of DACCS. Although both NETs can help to operate within the climate change and ocean acidification planetary boundaries, they may lead to trade-offs between Earth-system processes. Only DACCS can avert damage to the biosphere integrity without challenging other biophysical limits (impacts ≤2% of the safe operating space). The quantified NETs co-benefits can incentivize their adoption. |
format | Online Article Text |
id | pubmed-9085842 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-90858422022-05-11 Human and planetary health implications of negative emissions technologies Cobo, Selene Galán-Martín, Ángel Tulus, Victor Huijbregts, Mark A. J. Guillén-Gosálbez, Gonzalo Nat Commun Article Meeting the 1.5 °C target may require removing up to 1,000 Gtonne CO(2) by 2100 with Negative Emissions Technologies (NETs). We evaluate the impacts of Direct Air Capture and Bioenergy with Carbon Capture and Storage (DACCS and BECCS), finding that removing 5.9 Gtonne/year CO(2) can prevent <9·10(2) disability-adjusted life years per million people annually, relative to a baseline without NETs. Avoiding this health burden—similar to that of Parkinson’s—can save substantial externalities (≤148 US$/tonne CO(2)), comparable to the NETs levelized costs. The health co-benefits of BECCS, dependent on the biomass source, can exceed those of DACCS. Although both NETs can help to operate within the climate change and ocean acidification planetary boundaries, they may lead to trade-offs between Earth-system processes. Only DACCS can avert damage to the biosphere integrity without challenging other biophysical limits (impacts ≤2% of the safe operating space). The quantified NETs co-benefits can incentivize their adoption. Nature Publishing Group UK 2022-05-09 /pmc/articles/PMC9085842/ /pubmed/35534480 http://dx.doi.org/10.1038/s41467-022-30136-7 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Cobo, Selene Galán-Martín, Ángel Tulus, Victor Huijbregts, Mark A. J. Guillén-Gosálbez, Gonzalo Human and planetary health implications of negative emissions technologies |
title | Human and planetary health implications of negative emissions technologies |
title_full | Human and planetary health implications of negative emissions technologies |
title_fullStr | Human and planetary health implications of negative emissions technologies |
title_full_unstemmed | Human and planetary health implications of negative emissions technologies |
title_short | Human and planetary health implications of negative emissions technologies |
title_sort | human and planetary health implications of negative emissions technologies |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9085842/ https://www.ncbi.nlm.nih.gov/pubmed/35534480 http://dx.doi.org/10.1038/s41467-022-30136-7 |
work_keys_str_mv | AT coboselene humanandplanetaryhealthimplicationsofnegativeemissionstechnologies AT galanmartinangel humanandplanetaryhealthimplicationsofnegativeemissionstechnologies AT tulusvictor humanandplanetaryhealthimplicationsofnegativeemissionstechnologies AT huijbregtsmarkaj humanandplanetaryhealthimplicationsofnegativeemissionstechnologies AT guillengosalbezgonzalo humanandplanetaryhealthimplicationsofnegativeemissionstechnologies |