Cargando…
Phenomic data-facilitated rust and senescence prediction in maize using machine learning algorithms
Current methods in measuring maize (Zea mays L.) southern rust (Puccinia polyspora Underw.) and subsequent crop senescence require expert observation and are resource-intensive and prone to subjectivity. In this study, unoccupied aerial system (UAS) field-based high-throughput phenotyping (HTP) was...
Autores principales: | DeSalvio, Aaron J., Adak, Alper, Murray, Seth C., Wilde, Scott C., Isakeit, Thomas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9085875/ https://www.ncbi.nlm.nih.gov/pubmed/35534655 http://dx.doi.org/10.1038/s41598-022-11591-0 |
Ejemplares similares
-
Temporal phenomic predictions from unoccupied aerial systems can outperform genomic predictions
por: Adak, Alper, et al.
Publicado: (2022) -
Cumulative temporal vegetation indices from unoccupied aerial systems allow maize (Zea mays L.) hybrid yield to be estimated across environments with fewer flights
por: Chatterjee, Sumantra, et al.
Publicado: (2023) -
Validation of functional polymorphisms affecting maize plant height by unoccupied aerial systems discovers novel temporal phenotypes
por: Adak, Alper, et al.
Publicado: (2021) -
Seed-Derived Ethylene Facilitates Colonization but Not Aflatoxin Production by Aspergillus flavus in Maize
por: Wang, Shi, et al.
Publicado: (2017) -
Leaves of grass: focusing phenomics on maize leaf growth
por: Scanlon, Michael J.
Publicado: (2015)