Cargando…
Learning to simulate high energy particle collisions from unlabeled data
In many scientific fields which rely on statistical inference, simulations are often used to map from theoretical models to experimental data, allowing scientists to test model predictions against experimental results. Experimental data is often reconstructed from indirect measurements causing the a...
Autores principales: | Howard, Jessica N., Mandt, Stephan, Whiteson, Daniel, Yang, Yibo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9085893/ https://www.ncbi.nlm.nih.gov/pubmed/35534506 http://dx.doi.org/10.1038/s41598-022-10966-7 |
Ejemplares similares
-
Positive-unlabeled learning for disease gene identification
por: Yang, Peng, et al.
Publicado: (2012) -
Learning gene regulatory networks from only positive and unlabeled data
por: Cerulo, Luigi, et al.
Publicado: (2010) -
Editorial: Unsupervised Learning Models for Unlabeled Genomic, Transcriptomic & Proteomic Data
por: Xi, Jianing, et al.
Publicado: (2021) -
Learning an enriched representation from unlabeled data for protein-protein interaction extraction
por: Li, Yanpeng, et al.
Publicado: (2010) -
Positive-Unlabeled Learning for Pupylation Sites Prediction
por: Jiang, Ming, et al.
Publicado: (2016)