Cargando…
Reduced graphene oxide-supported methylene blue nanocomposite as a glucose oxidase-mimetic for electrochemical glucose sensing
In this paper, a hybrid nanocomposite (MB-rGO) was synthesized based on the π–π stacking interactions between methylene blue (MB) and reduced graphene oxide (rGO). The as-synthesized nanocomposite was characterized by SEM, TEM, XRD, FTIR, UV-vis and XPS spectra. UV-vis spectroscopy and electrochemic...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9086296/ https://www.ncbi.nlm.nih.gov/pubmed/35547707 http://dx.doi.org/10.1039/c8ra06208k |
Sumario: | In this paper, a hybrid nanocomposite (MB-rGO) was synthesized based on the π–π stacking interactions between methylene blue (MB) and reduced graphene oxide (rGO). The as-synthesized nanocomposite was characterized by SEM, TEM, XRD, FTIR, UV-vis and XPS spectra. UV-vis spectroscopy and electrochemical tests suggested the MB-rGO modified on the electrode exhibited glucose oxidase-mimetic catalytic activity towards glucose, and displayed excellent electrocatalytic performance for electrochemical detection of glucose with a wide linear range from 1.04 to 17.44 mM, a low detection limit of 45.8 μM and a large sensitivity of 13.08 μA mM(−1) cm(−2). The proposed glucose sensor also showed high stability, reproducibility and good abilities of anti-interference to dopamine, ascorbic acid and uric acid. Moreover, the modified electrode was used to determine glucose concentration in human blood serum samples with satisfactory results. |
---|