Cargando…
Preparation of a novel palladium catalytic hydrogel based on graphene oxide/chitosan NPs and cellulose nanowhiskers
The present paper focuses on the synthesis of a novel hydrogel support by combining polysaccharides (chitosan NPs and dialdehyde cellulose nanowhiskers) and graphene oxide nanosheets to obtain a biocompatible material for catalytic applications. The hydrogel was synthesized via green chemistry proce...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9086392/ https://www.ncbi.nlm.nih.gov/pubmed/35547694 http://dx.doi.org/10.1039/c8ra06623j |
_version_ | 1784703989259960320 |
---|---|
author | Ashiri, Samira Mehdipour, Ebrahim |
author_facet | Ashiri, Samira Mehdipour, Ebrahim |
author_sort | Ashiri, Samira |
collection | PubMed |
description | The present paper focuses on the synthesis of a novel hydrogel support by combining polysaccharides (chitosan NPs and dialdehyde cellulose nanowhiskers) and graphene oxide nanosheets to obtain a biocompatible material for catalytic applications. The hydrogel was synthesized via green chemistry processes and used as a support to prepare Pd nanoparticles. Finally, the hydrogel@Pd NPs was employed as the catalyst in the Mizoroki–Heck reaction to generate new C–C bonds. SEM analysis indicated that the hydrogel has macroporous morphology, which is in good correlation with its high crosslinking degree. The as-synthesized nanocomposite hydrogel exhibits beneficial properties such as ease of separation and excellent recyclability for at least six cycles without considerable loss in its activity. The yields of the products range from 81% to 98%. Additionally, this study provides the possibility to perform the Mizoroki–Heck reaction with aryl chloride in the presence of the as-prepared catalyst. |
format | Online Article Text |
id | pubmed-9086392 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90863922022-05-10 Preparation of a novel palladium catalytic hydrogel based on graphene oxide/chitosan NPs and cellulose nanowhiskers Ashiri, Samira Mehdipour, Ebrahim RSC Adv Chemistry The present paper focuses on the synthesis of a novel hydrogel support by combining polysaccharides (chitosan NPs and dialdehyde cellulose nanowhiskers) and graphene oxide nanosheets to obtain a biocompatible material for catalytic applications. The hydrogel was synthesized via green chemistry processes and used as a support to prepare Pd nanoparticles. Finally, the hydrogel@Pd NPs was employed as the catalyst in the Mizoroki–Heck reaction to generate new C–C bonds. SEM analysis indicated that the hydrogel has macroporous morphology, which is in good correlation with its high crosslinking degree. The as-synthesized nanocomposite hydrogel exhibits beneficial properties such as ease of separation and excellent recyclability for at least six cycles without considerable loss in its activity. The yields of the products range from 81% to 98%. Additionally, this study provides the possibility to perform the Mizoroki–Heck reaction with aryl chloride in the presence of the as-prepared catalyst. The Royal Society of Chemistry 2018-09-24 /pmc/articles/PMC9086392/ /pubmed/35547694 http://dx.doi.org/10.1039/c8ra06623j Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Ashiri, Samira Mehdipour, Ebrahim Preparation of a novel palladium catalytic hydrogel based on graphene oxide/chitosan NPs and cellulose nanowhiskers |
title | Preparation of a novel palladium catalytic hydrogel based on graphene oxide/chitosan NPs and cellulose nanowhiskers |
title_full | Preparation of a novel palladium catalytic hydrogel based on graphene oxide/chitosan NPs and cellulose nanowhiskers |
title_fullStr | Preparation of a novel palladium catalytic hydrogel based on graphene oxide/chitosan NPs and cellulose nanowhiskers |
title_full_unstemmed | Preparation of a novel palladium catalytic hydrogel based on graphene oxide/chitosan NPs and cellulose nanowhiskers |
title_short | Preparation of a novel palladium catalytic hydrogel based on graphene oxide/chitosan NPs and cellulose nanowhiskers |
title_sort | preparation of a novel palladium catalytic hydrogel based on graphene oxide/chitosan nps and cellulose nanowhiskers |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9086392/ https://www.ncbi.nlm.nih.gov/pubmed/35547694 http://dx.doi.org/10.1039/c8ra06623j |
work_keys_str_mv | AT ashirisamira preparationofanovelpalladiumcatalytichydrogelbasedongrapheneoxidechitosannpsandcellulosenanowhiskers AT mehdipourebrahim preparationofanovelpalladiumcatalytichydrogelbasedongrapheneoxidechitosannpsandcellulosenanowhiskers |