Cargando…

On general multi-server queues with non-poisson arrivals and medium traffic: a new approximation and a COVID-19 ventilator case study

We consider the multi-server, single-channel queue, i.e., a G/G/k queue with k identical servers in parallel, under the first-come-first-served discipline in which the inter-arrival process is non-Poisson, the service time has any given distribution, and traffic is of medium intensity. Such queues a...

Descripción completa

Detalles Bibliográficos
Autores principales: Chaves, Carlos, Gosavi, Abhijit
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9086425/
http://dx.doi.org/10.1007/s12351-022-00712-2
Descripción
Sumario:We consider the multi-server, single-channel queue, i.e., a G/G/k queue with k identical servers in parallel, under the first-come-first-served discipline in which the inter-arrival process is non-Poisson, the service time has any given distribution, and traffic is of medium intensity. Such queues are common in factories, airports, and hospitals, where the inter-arrival times and service times are typically not exponentially distributed, but rather have double-tapering distributions whose probability density functions taper on both sides, e.g., gamma, triangular etc. For these conditions, a new closed-form approximation based on only the mean and variance of the two inputs, the inter-arrival and service times, is presented. Determining distributions of inputs typically requires additional human effort in terms of histogram-fitting and running a goodness-of-fit test, which is avoided here. The new approximation is tested on a variety of scenarios and its performance is benchmarked against simulation. Further, the new approximation is also implemented on a ventilator case study from the recent COVID-19 pandemic to demonstrate its utility in optimizing server capacity. The approximation provides errors typically in the range 1–15% and 31% in the worst case. In systems where data change rapidly and decisions must be made quickly, this approximation will be particularly useful.