Cargando…

Substituent effect on TADF properties of 2-modified 4,6-bis(3,6-di-tert-butyl-9-carbazolyl)-5-methylpyrimidines

The interest in organic materials exhibiting thermally activated delayed fluorescence (TADF) significantly increased in recent years owing to their potential application as emitters in highly efficient organic light emitting diodes (OLEDs). Simple modification of the molecular structure of TADF comp...

Descripción completa

Detalles Bibliográficos
Autores principales: Fiodorova, Irina, Serevičius, Tomas, Skaisgiris, Rokas, Juršėnas, Saulius, Tumkevicius, Sigitas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Beilstein-Institut 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9086497/
https://www.ncbi.nlm.nih.gov/pubmed/35601989
http://dx.doi.org/10.3762/bjoc.18.52
Descripción
Sumario:The interest in organic materials exhibiting thermally activated delayed fluorescence (TADF) significantly increased in recent years owing to their potential application as emitters in highly efficient organic light emitting diodes (OLEDs). Simple modification of the molecular structure of TADF compounds through the selection of different electron-donating or accepting fragments opens great possibilities to tune the emission properties and rates. Here we present the synthesis of a series of novel pyrimidine–carbazole emitters and their photophysical characterization in view of effects of substituents in the pyrimidine ring on their TADF properties. We demonstrate that electron-withdrawing substituents directly connected to the pyrimidine unit have greater impact on the lowering of the energy gap between singlet and triplet states (ΔE(ST)) for efficient TADF as compared to those attached through a phenylene bridge. A modification of the pyrimidine unit with CN, SCH(3), and SO(2)CH(3) functional groups at position 2 is shown to enhance the emission yield up to 0.5 with pronounced TADF activity.