Cargando…
Using Natural Language Processing and Machine Learning to Preoperatively Predict Lymph Node Metastasis for Non–Small Cell Lung Cancer With Electronic Medical Records: Development and Validation Study
BACKGROUND: Lymph node metastasis (LNM) is critical for treatment decision making of patients with resectable non–small cell lung cancer, but it is difficult to precisely diagnose preoperatively. Electronic medical records (EMRs) contain a large volume of valuable information about LNM, but some key...
Autores principales: | Hu, Danqing, Li, Shaolei, Zhang, Huanyao, Wu, Nan, Lu, Xudong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9086872/ https://www.ncbi.nlm.nih.gov/pubmed/35468085 http://dx.doi.org/10.2196/35475 |
Ejemplares similares
-
Automatic Extraction of Lung Cancer Staging Information From Computed Tomography Reports: Deep Learning Approach
por: Hu, Danqing, et al.
Publicado: (2021) -
A novel deep learning approach to extract Chinese clinical entities for lung cancer screening and staging
por: Zhang, Huanyao, et al.
Publicado: (2021) -
An ensemble learning with active sampling to predict the prognosis of postoperative non-small cell lung cancer patients
por: Hu, Danqing, et al.
Publicado: (2022) -
Development and Validation of a Combined Model for Preoperative Prediction of Lymph Node Metastasis in Peripheral Lung Adenocarcinoma
por: Li, Qi, et al.
Publicado: (2021) -
Preoperative Predictors of Lymph Node Metastasis in Colon Cancer
por: Xu, Yansong, et al.
Publicado: (2021)