Cargando…
“Y”-shaped BP/PbS/PbSe nano-devices based on silicon carbide nanoribbons
Quantum mechanics-based simulations have been undertaken to support the development and application of multi-functional nano-devices constructed from zigzag silicon carbide nanoribbons (zSiCNRs), boron phosphide (BP), nanoribbons (zBPNRs), and Pb-chalcogenide (PbS, PbSe) nanoribbons. We explore the...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9087283/ https://www.ncbi.nlm.nih.gov/pubmed/35547065 http://dx.doi.org/10.1039/c8ra07372d |
_version_ | 1784704170732814336 |
---|---|
author | Zhang, Lishu Li, Tao Jiang, Yangyan Arandiyan, Hamidreza Li, Hui |
author_facet | Zhang, Lishu Li, Tao Jiang, Yangyan Arandiyan, Hamidreza Li, Hui |
author_sort | Zhang, Lishu |
collection | PubMed |
description | Quantum mechanics-based simulations have been undertaken to support the development and application of multi-functional nano-devices constructed from zigzag silicon carbide nanoribbons (zSiCNRs), boron phosphide (BP), nanoribbons (zBPNRs), and Pb-chalcogenide (PbS, PbSe) nanoribbons. We explore the effect of gate voltage on the electronic performance of the devices. Symmetric I–V characteristics, spin polarization properties, NDR effects, and high rectification ratios are observed among these devices. The effects of the angle, length and width of the constructed nanoribbon are also studied. The results show that the width of the nanoribbons can have a substantial influence on their electronic performance. These results provide a crucial simulation input to help guide the design of multi-functional nano-devices built from hybrid SiC–BP/PbS/PbSe nanostructures, and this research is essential for better understanding of their electronic transport properties. |
format | Online Article Text |
id | pubmed-9087283 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90872832022-05-10 “Y”-shaped BP/PbS/PbSe nano-devices based on silicon carbide nanoribbons Zhang, Lishu Li, Tao Jiang, Yangyan Arandiyan, Hamidreza Li, Hui RSC Adv Chemistry Quantum mechanics-based simulations have been undertaken to support the development and application of multi-functional nano-devices constructed from zigzag silicon carbide nanoribbons (zSiCNRs), boron phosphide (BP), nanoribbons (zBPNRs), and Pb-chalcogenide (PbS, PbSe) nanoribbons. We explore the effect of gate voltage on the electronic performance of the devices. Symmetric I–V characteristics, spin polarization properties, NDR effects, and high rectification ratios are observed among these devices. The effects of the angle, length and width of the constructed nanoribbon are also studied. The results show that the width of the nanoribbons can have a substantial influence on their electronic performance. These results provide a crucial simulation input to help guide the design of multi-functional nano-devices built from hybrid SiC–BP/PbS/PbSe nanostructures, and this research is essential for better understanding of their electronic transport properties. The Royal Society of Chemistry 2018-10-12 /pmc/articles/PMC9087283/ /pubmed/35547065 http://dx.doi.org/10.1039/c8ra07372d Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Zhang, Lishu Li, Tao Jiang, Yangyan Arandiyan, Hamidreza Li, Hui “Y”-shaped BP/PbS/PbSe nano-devices based on silicon carbide nanoribbons |
title | “Y”-shaped BP/PbS/PbSe nano-devices based on silicon carbide nanoribbons |
title_full | “Y”-shaped BP/PbS/PbSe nano-devices based on silicon carbide nanoribbons |
title_fullStr | “Y”-shaped BP/PbS/PbSe nano-devices based on silicon carbide nanoribbons |
title_full_unstemmed | “Y”-shaped BP/PbS/PbSe nano-devices based on silicon carbide nanoribbons |
title_short | “Y”-shaped BP/PbS/PbSe nano-devices based on silicon carbide nanoribbons |
title_sort | “y”-shaped bp/pbs/pbse nano-devices based on silicon carbide nanoribbons |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9087283/ https://www.ncbi.nlm.nih.gov/pubmed/35547065 http://dx.doi.org/10.1039/c8ra07372d |
work_keys_str_mv | AT zhanglishu yshapedbppbspbsenanodevicesbasedonsiliconcarbidenanoribbons AT litao yshapedbppbspbsenanodevicesbasedonsiliconcarbidenanoribbons AT jiangyangyan yshapedbppbspbsenanodevicesbasedonsiliconcarbidenanoribbons AT arandiyanhamidreza yshapedbppbspbsenanodevicesbasedonsiliconcarbidenanoribbons AT lihui yshapedbppbspbsenanodevicesbasedonsiliconcarbidenanoribbons |