Cargando…
Palladium catalyst imbedded in polymers of intrinsic microporosity for the Suzuki–Miyaura coupling reaction
Polymers of intrinsic microporosity (PIMs) are porous polymers with rigid ladder-type chain structures. Synthesizing these polymers usually involves the step polymerization of two types of monomer, namely, active fluorine-substituted aromatic ring monomers and phenolic monomers. Herein, we report a...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9087636/ https://www.ncbi.nlm.nih.gov/pubmed/35547052 http://dx.doi.org/10.1039/c8ra06214e |
Sumario: | Polymers of intrinsic microporosity (PIMs) are porous polymers with rigid ladder-type chain structures. Synthesizing these polymers usually involves the step polymerization of two types of monomer, namely, active fluorine-substituted aromatic ring monomers and phenolic monomers. Herein, we report a new PIMs preparation method using self-synthesized fluorinated monomers and common monomer 5,5′,6,6′-tetrahydroxy-3,3,3′,3′-tetramethyl spirobisindane. The fluorinated monomers were synthesized through the imidization of tetrafluorophthalic anhydride and aromatic diamines. The resulting PIMs served as a support for palladium, with the formed catalyst showing potential for application in the Suzuki–Miyaura coupling reaction. |
---|