Cargando…

Mechanistic Insight into the Precursor Chemistry of ZrO(2) and HfO(2) Nanocrystals; towards Size-Tunable Syntheses

[Image: see text] One can nowadays readily generate monodisperse colloidal nanocrystals, but a retrosynthetic analysis is still not possible since the underlying chemistry is often poorly understood. Here, we provide insight into the reaction mechanism of colloidal zirconia and hafnia nanocrystals s...

Descripción completa

Detalles Bibliográficos
Autores principales: Pokratath, Rohan, Van den Eynden, Dietger, Cooper, Susan Rudd, Mathiesen, Jette Katja, Waser, Valérie, Devereux, Mike, Billinge, Simon J. L., Meuwly, Markus, Jensen, Kirsten M. Ø., De Roo, Jonathan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9088301/
https://www.ncbi.nlm.nih.gov/pubmed/35557760
http://dx.doi.org/10.1021/jacsau.1c00568
_version_ 1784704331771019264
author Pokratath, Rohan
Van den Eynden, Dietger
Cooper, Susan Rudd
Mathiesen, Jette Katja
Waser, Valérie
Devereux, Mike
Billinge, Simon J. L.
Meuwly, Markus
Jensen, Kirsten M. Ø.
De Roo, Jonathan
author_facet Pokratath, Rohan
Van den Eynden, Dietger
Cooper, Susan Rudd
Mathiesen, Jette Katja
Waser, Valérie
Devereux, Mike
Billinge, Simon J. L.
Meuwly, Markus
Jensen, Kirsten M. Ø.
De Roo, Jonathan
author_sort Pokratath, Rohan
collection PubMed
description [Image: see text] One can nowadays readily generate monodisperse colloidal nanocrystals, but a retrosynthetic analysis is still not possible since the underlying chemistry is often poorly understood. Here, we provide insight into the reaction mechanism of colloidal zirconia and hafnia nanocrystals synthesized from metal chloride and metal isopropoxide. We identify the active precursor species in the reaction mixture through a combination of nuclear magnetic resonance spectroscopy (NMR), density functional theory (DFT) calculations, and pair distribution function (PDF) analysis. We gain insight into the interaction of the surfactant, tri-n-octylphosphine oxide (TOPO), and the different precursors. Interestingly, we identify a peculiar X-type ligand redistribution mechanism that can be steered by the relative amount of Lewis base (L-type). We further monitor how the reaction mixture decomposes using solution NMR and gas chromatography, and we find that ZrCl(4) is formed as a by-product of the reaction, limiting the reaction yield. The reaction proceeds via two competing mechanisms: E1 elimination (dominating) and S(N)1 substitution (minor). Using this new mechanistic insight, we adapted the synthesis to optimize the yield and gain control over nanocrystal size. These insights will allow the rational design and synthesis of complex oxide nanocrystals.
format Online
Article
Text
id pubmed-9088301
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-90883012022-05-11 Mechanistic Insight into the Precursor Chemistry of ZrO(2) and HfO(2) Nanocrystals; towards Size-Tunable Syntheses Pokratath, Rohan Van den Eynden, Dietger Cooper, Susan Rudd Mathiesen, Jette Katja Waser, Valérie Devereux, Mike Billinge, Simon J. L. Meuwly, Markus Jensen, Kirsten M. Ø. De Roo, Jonathan JACS Au [Image: see text] One can nowadays readily generate monodisperse colloidal nanocrystals, but a retrosynthetic analysis is still not possible since the underlying chemistry is often poorly understood. Here, we provide insight into the reaction mechanism of colloidal zirconia and hafnia nanocrystals synthesized from metal chloride and metal isopropoxide. We identify the active precursor species in the reaction mixture through a combination of nuclear magnetic resonance spectroscopy (NMR), density functional theory (DFT) calculations, and pair distribution function (PDF) analysis. We gain insight into the interaction of the surfactant, tri-n-octylphosphine oxide (TOPO), and the different precursors. Interestingly, we identify a peculiar X-type ligand redistribution mechanism that can be steered by the relative amount of Lewis base (L-type). We further monitor how the reaction mixture decomposes using solution NMR and gas chromatography, and we find that ZrCl(4) is formed as a by-product of the reaction, limiting the reaction yield. The reaction proceeds via two competing mechanisms: E1 elimination (dominating) and S(N)1 substitution (minor). Using this new mechanistic insight, we adapted the synthesis to optimize the yield and gain control over nanocrystal size. These insights will allow the rational design and synthesis of complex oxide nanocrystals. American Chemical Society 2022-03-09 /pmc/articles/PMC9088301/ /pubmed/35557760 http://dx.doi.org/10.1021/jacsau.1c00568 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Pokratath, Rohan
Van den Eynden, Dietger
Cooper, Susan Rudd
Mathiesen, Jette Katja
Waser, Valérie
Devereux, Mike
Billinge, Simon J. L.
Meuwly, Markus
Jensen, Kirsten M. Ø.
De Roo, Jonathan
Mechanistic Insight into the Precursor Chemistry of ZrO(2) and HfO(2) Nanocrystals; towards Size-Tunable Syntheses
title Mechanistic Insight into the Precursor Chemistry of ZrO(2) and HfO(2) Nanocrystals; towards Size-Tunable Syntheses
title_full Mechanistic Insight into the Precursor Chemistry of ZrO(2) and HfO(2) Nanocrystals; towards Size-Tunable Syntheses
title_fullStr Mechanistic Insight into the Precursor Chemistry of ZrO(2) and HfO(2) Nanocrystals; towards Size-Tunable Syntheses
title_full_unstemmed Mechanistic Insight into the Precursor Chemistry of ZrO(2) and HfO(2) Nanocrystals; towards Size-Tunable Syntheses
title_short Mechanistic Insight into the Precursor Chemistry of ZrO(2) and HfO(2) Nanocrystals; towards Size-Tunable Syntheses
title_sort mechanistic insight into the precursor chemistry of zro(2) and hfo(2) nanocrystals; towards size-tunable syntheses
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9088301/
https://www.ncbi.nlm.nih.gov/pubmed/35557760
http://dx.doi.org/10.1021/jacsau.1c00568
work_keys_str_mv AT pokratathrohan mechanisticinsightintotheprecursorchemistryofzro2andhfo2nanocrystalstowardssizetunablesyntheses
AT vandeneyndendietger mechanisticinsightintotheprecursorchemistryofzro2andhfo2nanocrystalstowardssizetunablesyntheses
AT coopersusanrudd mechanisticinsightintotheprecursorchemistryofzro2andhfo2nanocrystalstowardssizetunablesyntheses
AT mathiesenjettekatja mechanisticinsightintotheprecursorchemistryofzro2andhfo2nanocrystalstowardssizetunablesyntheses
AT waservalerie mechanisticinsightintotheprecursorchemistryofzro2andhfo2nanocrystalstowardssizetunablesyntheses
AT devereuxmike mechanisticinsightintotheprecursorchemistryofzro2andhfo2nanocrystalstowardssizetunablesyntheses
AT billingesimonjl mechanisticinsightintotheprecursorchemistryofzro2andhfo2nanocrystalstowardssizetunablesyntheses
AT meuwlymarkus mechanisticinsightintotheprecursorchemistryofzro2andhfo2nanocrystalstowardssizetunablesyntheses
AT jensenkirstenmø mechanisticinsightintotheprecursorchemistryofzro2andhfo2nanocrystalstowardssizetunablesyntheses
AT deroojonathan mechanisticinsightintotheprecursorchemistryofzro2andhfo2nanocrystalstowardssizetunablesyntheses