Cargando…
Mechanistic Insight into the Precursor Chemistry of ZrO(2) and HfO(2) Nanocrystals; towards Size-Tunable Syntheses
[Image: see text] One can nowadays readily generate monodisperse colloidal nanocrystals, but a retrosynthetic analysis is still not possible since the underlying chemistry is often poorly understood. Here, we provide insight into the reaction mechanism of colloidal zirconia and hafnia nanocrystals s...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9088301/ https://www.ncbi.nlm.nih.gov/pubmed/35557760 http://dx.doi.org/10.1021/jacsau.1c00568 |
_version_ | 1784704331771019264 |
---|---|
author | Pokratath, Rohan Van den Eynden, Dietger Cooper, Susan Rudd Mathiesen, Jette Katja Waser, Valérie Devereux, Mike Billinge, Simon J. L. Meuwly, Markus Jensen, Kirsten M. Ø. De Roo, Jonathan |
author_facet | Pokratath, Rohan Van den Eynden, Dietger Cooper, Susan Rudd Mathiesen, Jette Katja Waser, Valérie Devereux, Mike Billinge, Simon J. L. Meuwly, Markus Jensen, Kirsten M. Ø. De Roo, Jonathan |
author_sort | Pokratath, Rohan |
collection | PubMed |
description | [Image: see text] One can nowadays readily generate monodisperse colloidal nanocrystals, but a retrosynthetic analysis is still not possible since the underlying chemistry is often poorly understood. Here, we provide insight into the reaction mechanism of colloidal zirconia and hafnia nanocrystals synthesized from metal chloride and metal isopropoxide. We identify the active precursor species in the reaction mixture through a combination of nuclear magnetic resonance spectroscopy (NMR), density functional theory (DFT) calculations, and pair distribution function (PDF) analysis. We gain insight into the interaction of the surfactant, tri-n-octylphosphine oxide (TOPO), and the different precursors. Interestingly, we identify a peculiar X-type ligand redistribution mechanism that can be steered by the relative amount of Lewis base (L-type). We further monitor how the reaction mixture decomposes using solution NMR and gas chromatography, and we find that ZrCl(4) is formed as a by-product of the reaction, limiting the reaction yield. The reaction proceeds via two competing mechanisms: E1 elimination (dominating) and S(N)1 substitution (minor). Using this new mechanistic insight, we adapted the synthesis to optimize the yield and gain control over nanocrystal size. These insights will allow the rational design and synthesis of complex oxide nanocrystals. |
format | Online Article Text |
id | pubmed-9088301 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-90883012022-05-11 Mechanistic Insight into the Precursor Chemistry of ZrO(2) and HfO(2) Nanocrystals; towards Size-Tunable Syntheses Pokratath, Rohan Van den Eynden, Dietger Cooper, Susan Rudd Mathiesen, Jette Katja Waser, Valérie Devereux, Mike Billinge, Simon J. L. Meuwly, Markus Jensen, Kirsten M. Ø. De Roo, Jonathan JACS Au [Image: see text] One can nowadays readily generate monodisperse colloidal nanocrystals, but a retrosynthetic analysis is still not possible since the underlying chemistry is often poorly understood. Here, we provide insight into the reaction mechanism of colloidal zirconia and hafnia nanocrystals synthesized from metal chloride and metal isopropoxide. We identify the active precursor species in the reaction mixture through a combination of nuclear magnetic resonance spectroscopy (NMR), density functional theory (DFT) calculations, and pair distribution function (PDF) analysis. We gain insight into the interaction of the surfactant, tri-n-octylphosphine oxide (TOPO), and the different precursors. Interestingly, we identify a peculiar X-type ligand redistribution mechanism that can be steered by the relative amount of Lewis base (L-type). We further monitor how the reaction mixture decomposes using solution NMR and gas chromatography, and we find that ZrCl(4) is formed as a by-product of the reaction, limiting the reaction yield. The reaction proceeds via two competing mechanisms: E1 elimination (dominating) and S(N)1 substitution (minor). Using this new mechanistic insight, we adapted the synthesis to optimize the yield and gain control over nanocrystal size. These insights will allow the rational design and synthesis of complex oxide nanocrystals. American Chemical Society 2022-03-09 /pmc/articles/PMC9088301/ /pubmed/35557760 http://dx.doi.org/10.1021/jacsau.1c00568 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Pokratath, Rohan Van den Eynden, Dietger Cooper, Susan Rudd Mathiesen, Jette Katja Waser, Valérie Devereux, Mike Billinge, Simon J. L. Meuwly, Markus Jensen, Kirsten M. Ø. De Roo, Jonathan Mechanistic Insight into the Precursor Chemistry of ZrO(2) and HfO(2) Nanocrystals; towards Size-Tunable Syntheses |
title | Mechanistic Insight into the Precursor Chemistry of
ZrO(2) and HfO(2) Nanocrystals; towards Size-Tunable
Syntheses |
title_full | Mechanistic Insight into the Precursor Chemistry of
ZrO(2) and HfO(2) Nanocrystals; towards Size-Tunable
Syntheses |
title_fullStr | Mechanistic Insight into the Precursor Chemistry of
ZrO(2) and HfO(2) Nanocrystals; towards Size-Tunable
Syntheses |
title_full_unstemmed | Mechanistic Insight into the Precursor Chemistry of
ZrO(2) and HfO(2) Nanocrystals; towards Size-Tunable
Syntheses |
title_short | Mechanistic Insight into the Precursor Chemistry of
ZrO(2) and HfO(2) Nanocrystals; towards Size-Tunable
Syntheses |
title_sort | mechanistic insight into the precursor chemistry of
zro(2) and hfo(2) nanocrystals; towards size-tunable
syntheses |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9088301/ https://www.ncbi.nlm.nih.gov/pubmed/35557760 http://dx.doi.org/10.1021/jacsau.1c00568 |
work_keys_str_mv | AT pokratathrohan mechanisticinsightintotheprecursorchemistryofzro2andhfo2nanocrystalstowardssizetunablesyntheses AT vandeneyndendietger mechanisticinsightintotheprecursorchemistryofzro2andhfo2nanocrystalstowardssizetunablesyntheses AT coopersusanrudd mechanisticinsightintotheprecursorchemistryofzro2andhfo2nanocrystalstowardssizetunablesyntheses AT mathiesenjettekatja mechanisticinsightintotheprecursorchemistryofzro2andhfo2nanocrystalstowardssizetunablesyntheses AT waservalerie mechanisticinsightintotheprecursorchemistryofzro2andhfo2nanocrystalstowardssizetunablesyntheses AT devereuxmike mechanisticinsightintotheprecursorchemistryofzro2andhfo2nanocrystalstowardssizetunablesyntheses AT billingesimonjl mechanisticinsightintotheprecursorchemistryofzro2andhfo2nanocrystalstowardssizetunablesyntheses AT meuwlymarkus mechanisticinsightintotheprecursorchemistryofzro2andhfo2nanocrystalstowardssizetunablesyntheses AT jensenkirstenmø mechanisticinsightintotheprecursorchemistryofzro2andhfo2nanocrystalstowardssizetunablesyntheses AT deroojonathan mechanisticinsightintotheprecursorchemistryofzro2andhfo2nanocrystalstowardssizetunablesyntheses |