Cargando…
Total Synthesis of (+)-Hinckdentine A: Harnessing Noncovalent Interactions for Organocatalytic Bromination
[Image: see text] Hinckdentine A, a marine-sponge-derived tribrominated indole alkaloid bearing a unique indolo[1,2-c]quinazoline skeleton, was completed in 12 steps featuring the construction of the Nα-quaternary carbon center by asymmetric azo-ene cyclization. A novel organocatalyst was developed...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9088303/ https://www.ncbi.nlm.nih.gov/pubmed/35557764 http://dx.doi.org/10.1021/jacsau.2c00048 |
Sumario: | [Image: see text] Hinckdentine A, a marine-sponge-derived tribrominated indole alkaloid bearing a unique indolo[1,2-c]quinazoline skeleton, was completed in 12 steps featuring the construction of the Nα-quaternary carbon center by asymmetric azo-ene cyclization. A novel organocatalyst was developed to promote high-yielding tribromination, which represents a challenging process encountered in previous syntheses. Density functional theory calculations scrutinized viable substrates and deciphered the origin of the enhancement of C8 electrophilic bromination with a bifunctional organocatalyst. Moreover, the application of organocatalyst-enabled bromination on various substrates was demonstrated to highlight future late functionalizations of biologically intriguing targets. |
---|