Cargando…
Magnetic-propelled Fe(3)O(4)–chitosan carriers enhance l-asparaginase catalytic activity: a promising strategy for enzyme immobilization
Magnetic-propelled carriers comprising magnetic Fe(3)O(4)–chitosan nanoparticles were immobilized with l-asparaginase (l-ASNase). The enzyme displayed enhanced catalytic activity in a weak magnetic field, and thermal and pH stabilities. The conjugated l-ASNase presented higher thermostability and wi...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9088402/ https://www.ncbi.nlm.nih.gov/pubmed/35558460 http://dx.doi.org/10.1039/c8ra06346j |
Sumario: | Magnetic-propelled carriers comprising magnetic Fe(3)O(4)–chitosan nanoparticles were immobilized with l-asparaginase (l-ASNase). The enzyme displayed enhanced catalytic activity in a weak magnetic field, and thermal and pH stabilities. The conjugated l-ASNase presented higher thermostability and wider range of pH stability in comparison with those of free l-ASNase. Moreover, the reusability of conjugated l-ASNase significantly improved after immobilization and it retained 60.5% of its initial activity after undergoing 16 cycles. The conjugated l-ASNase maintained more than 50% and 48% initial activity after 4 weeks of storage at 4 °C and room temperature, respectively. Furthermore, we reveal that the activity of conjugated l-ASNase onto magnetic Fe(3)O(4)–chitosan particles increased by about 3-fold in the weak magnetic field at certain frequencies and flux density compared with that of free l-ASNase. Considering these excellent attributes, the magnetic-propelled mechanism in the transporting and activation of l-ASNase can be used by enhancing the catalytic activity, stability, and efficiency in vital implications for medicinal biotechnology. |
---|