Cargando…
Development of high damping acrylic rubber/sliding graft copolymer composites
Aiming at fabricating high damping rubber composites, the acrylic rubber ACM was incorporated with sliding graft copolymer (SGC) materials. SGC is a novel supramolecular material with sliding crosslink junctions, and it acts as a high damping phase in ACM/SGC composites. Fourier transform infrared s...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9088517/ https://www.ncbi.nlm.nih.gov/pubmed/35558499 http://dx.doi.org/10.1039/c8ra04644a |
_version_ | 1784704349945987072 |
---|---|
author | Wang, Junjun Wang, Wencai Geng, Xiaoyan Nishi, Toshio Zhao, Xiuying Zhang, Liqun |
author_facet | Wang, Junjun Wang, Wencai Geng, Xiaoyan Nishi, Toshio Zhao, Xiuying Zhang, Liqun |
author_sort | Wang, Junjun |
collection | PubMed |
description | Aiming at fabricating high damping rubber composites, the acrylic rubber ACM was incorporated with sliding graft copolymer (SGC) materials. SGC is a novel supramolecular material with sliding crosslink junctions, and it acts as a high damping phase in ACM/SGC composites. Fourier transform infrared spectroscopy reveals the presence of two types of hydrogen bonds in ACM/SGC composites. Micro-structure analysis shows a clear sea-island phase structure. SGC particles disperse fairly uniformly in the ACM matrix. A wide interphase region exists between these two phases, indicating the good blend compatibility between ACM and SGC. The damping performance of ACM/SGC composites under dynamic shear strain and frequency condition significantly improved with the increase in SGC content. Specifically, the loss factor (tan δ) value of ACM/SGC (100/40) composite increased by 120% compared with that of neat ACM, according to the RPA results. The significantly improved damping property can be ascribed to the interfacial hydrogen bonds and the pulley effect of SGC molecules. |
format | Online Article Text |
id | pubmed-9088517 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90885172022-05-11 Development of high damping acrylic rubber/sliding graft copolymer composites Wang, Junjun Wang, Wencai Geng, Xiaoyan Nishi, Toshio Zhao, Xiuying Zhang, Liqun RSC Adv Chemistry Aiming at fabricating high damping rubber composites, the acrylic rubber ACM was incorporated with sliding graft copolymer (SGC) materials. SGC is a novel supramolecular material with sliding crosslink junctions, and it acts as a high damping phase in ACM/SGC composites. Fourier transform infrared spectroscopy reveals the presence of two types of hydrogen bonds in ACM/SGC composites. Micro-structure analysis shows a clear sea-island phase structure. SGC particles disperse fairly uniformly in the ACM matrix. A wide interphase region exists between these two phases, indicating the good blend compatibility between ACM and SGC. The damping performance of ACM/SGC composites under dynamic shear strain and frequency condition significantly improved with the increase in SGC content. Specifically, the loss factor (tan δ) value of ACM/SGC (100/40) composite increased by 120% compared with that of neat ACM, according to the RPA results. The significantly improved damping property can be ascribed to the interfacial hydrogen bonds and the pulley effect of SGC molecules. The Royal Society of Chemistry 2018-10-24 /pmc/articles/PMC9088517/ /pubmed/35558499 http://dx.doi.org/10.1039/c8ra04644a Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Wang, Junjun Wang, Wencai Geng, Xiaoyan Nishi, Toshio Zhao, Xiuying Zhang, Liqun Development of high damping acrylic rubber/sliding graft copolymer composites |
title | Development of high damping acrylic rubber/sliding graft copolymer composites |
title_full | Development of high damping acrylic rubber/sliding graft copolymer composites |
title_fullStr | Development of high damping acrylic rubber/sliding graft copolymer composites |
title_full_unstemmed | Development of high damping acrylic rubber/sliding graft copolymer composites |
title_short | Development of high damping acrylic rubber/sliding graft copolymer composites |
title_sort | development of high damping acrylic rubber/sliding graft copolymer composites |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9088517/ https://www.ncbi.nlm.nih.gov/pubmed/35558499 http://dx.doi.org/10.1039/c8ra04644a |
work_keys_str_mv | AT wangjunjun developmentofhighdampingacrylicrubberslidinggraftcopolymercomposites AT wangwencai developmentofhighdampingacrylicrubberslidinggraftcopolymercomposites AT gengxiaoyan developmentofhighdampingacrylicrubberslidinggraftcopolymercomposites AT nishitoshio developmentofhighdampingacrylicrubberslidinggraftcopolymercomposites AT zhaoxiuying developmentofhighdampingacrylicrubberslidinggraftcopolymercomposites AT zhangliqun developmentofhighdampingacrylicrubberslidinggraftcopolymercomposites |