Cargando…

gcCov: Linked open data for global coronavirus studies

We present a method of mapping data from publicly available genomics and publication resources to the Resource Description Framework (RDF) and implement a server to publish linked open data (LOD). As one of the largest and most comprehensive semantic databases about coronaviruses, the resulted gcCov...

Descripción completa

Detalles Bibliográficos
Autores principales: Shi, Wenyu, Fan, Guomei, Shen, Zhihong, Hu, Chuan, Ma, Juncai, Zhou, Yuanchun, Meng, Zhen, Hu, Songnian, Bi, Yuhai, Wang, Liang, Yu, Haiying, Lin, Siru, Sun, Xiuqiang, Zhang, Xinjiao, Liu, Dongmei, Sun, Qinlan, Wu, Linhuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9088579/
https://www.ncbi.nlm.nih.gov/pubmed/37731725
http://dx.doi.org/10.1002/mlf2.12008
_version_ 1784704355823255552
author Shi, Wenyu
Fan, Guomei
Shen, Zhihong
Hu, Chuan
Ma, Juncai
Zhou, Yuanchun
Meng, Zhen
Hu, Songnian
Bi, Yuhai
Wang, Liang
Yu, Haiying
Lin, Siru
Sun, Xiuqiang
Zhang, Xinjiao
Liu, Dongmei
Sun, Qinlan
Wu, Linhuan
author_facet Shi, Wenyu
Fan, Guomei
Shen, Zhihong
Hu, Chuan
Ma, Juncai
Zhou, Yuanchun
Meng, Zhen
Hu, Songnian
Bi, Yuhai
Wang, Liang
Yu, Haiying
Lin, Siru
Sun, Xiuqiang
Zhang, Xinjiao
Liu, Dongmei
Sun, Qinlan
Wu, Linhuan
author_sort Shi, Wenyu
collection PubMed
description We present a method of mapping data from publicly available genomics and publication resources to the Resource Description Framework (RDF) and implement a server to publish linked open data (LOD). As one of the largest and most comprehensive semantic databases about coronaviruses, the resulted gcCov database demonstrates the capability of using data in the LOD framework to promote correlations between genotypes and phenotypes. These correlations will be helpful for future research on fundamental viral mechanisms and drug and vaccine designs. These LOD with 62,168,127 semantic triplets and their visualizations are freely accessible through gcCov at https://nmdc.cn/gccov/.
format Online
Article
Text
id pubmed-9088579
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-90885792022-05-10 gcCov: Linked open data for global coronavirus studies Shi, Wenyu Fan, Guomei Shen, Zhihong Hu, Chuan Ma, Juncai Zhou, Yuanchun Meng, Zhen Hu, Songnian Bi, Yuhai Wang, Liang Yu, Haiying Lin, Siru Sun, Xiuqiang Zhang, Xinjiao Liu, Dongmei Sun, Qinlan Wu, Linhuan mLife Application Note We present a method of mapping data from publicly available genomics and publication resources to the Resource Description Framework (RDF) and implement a server to publish linked open data (LOD). As one of the largest and most comprehensive semantic databases about coronaviruses, the resulted gcCov database demonstrates the capability of using data in the LOD framework to promote correlations between genotypes and phenotypes. These correlations will be helpful for future research on fundamental viral mechanisms and drug and vaccine designs. These LOD with 62,168,127 semantic triplets and their visualizations are freely accessible through gcCov at https://nmdc.cn/gccov/. John Wiley and Sons Inc. 2022-03-16 2022-03 /pmc/articles/PMC9088579/ /pubmed/37731725 http://dx.doi.org/10.1002/mlf2.12008 Text en © 2022 The Authors. mLife published by John Wiley & Sons Australia, Ltd. on behalf of Institute of Microbiology, Chinese Academy of Sciences. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Application Note
Shi, Wenyu
Fan, Guomei
Shen, Zhihong
Hu, Chuan
Ma, Juncai
Zhou, Yuanchun
Meng, Zhen
Hu, Songnian
Bi, Yuhai
Wang, Liang
Yu, Haiying
Lin, Siru
Sun, Xiuqiang
Zhang, Xinjiao
Liu, Dongmei
Sun, Qinlan
Wu, Linhuan
gcCov: Linked open data for global coronavirus studies
title gcCov: Linked open data for global coronavirus studies
title_full gcCov: Linked open data for global coronavirus studies
title_fullStr gcCov: Linked open data for global coronavirus studies
title_full_unstemmed gcCov: Linked open data for global coronavirus studies
title_short gcCov: Linked open data for global coronavirus studies
title_sort gccov: linked open data for global coronavirus studies
topic Application Note
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9088579/
https://www.ncbi.nlm.nih.gov/pubmed/37731725
http://dx.doi.org/10.1002/mlf2.12008
work_keys_str_mv AT shiwenyu gccovlinkedopendataforglobalcoronavirusstudies
AT fanguomei gccovlinkedopendataforglobalcoronavirusstudies
AT shenzhihong gccovlinkedopendataforglobalcoronavirusstudies
AT huchuan gccovlinkedopendataforglobalcoronavirusstudies
AT majuncai gccovlinkedopendataforglobalcoronavirusstudies
AT zhouyuanchun gccovlinkedopendataforglobalcoronavirusstudies
AT mengzhen gccovlinkedopendataforglobalcoronavirusstudies
AT husongnian gccovlinkedopendataforglobalcoronavirusstudies
AT biyuhai gccovlinkedopendataforglobalcoronavirusstudies
AT wangliang gccovlinkedopendataforglobalcoronavirusstudies
AT yuhaiying gccovlinkedopendataforglobalcoronavirusstudies
AT linsiru gccovlinkedopendataforglobalcoronavirusstudies
AT sunxiuqiang gccovlinkedopendataforglobalcoronavirusstudies
AT zhangxinjiao gccovlinkedopendataforglobalcoronavirusstudies
AT liudongmei gccovlinkedopendataforglobalcoronavirusstudies
AT sunqinlan gccovlinkedopendataforglobalcoronavirusstudies
AT wulinhuan gccovlinkedopendataforglobalcoronavirusstudies