Cargando…
New Empirical Correlations to Estimate the Least Principal Stresses Using Conventional Logging Data
[Image: see text] The maximum (Sh(max)) and minimum (Sh(min)) horizontal stresses are essential parameters for the well planning and hydraulic fracturing design. These stresses can be accurately measured using field tests such as the leak-off test, step-rate test, and so forth, or approximated using...
Autores principales: | Gowida, Ahmed, Ibrahim, Ahmed Farid, Elkatatny, Salaheldin, Ali, Abdulwahab |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9088765/ https://www.ncbi.nlm.nih.gov/pubmed/35559186 http://dx.doi.org/10.1021/acsomega.1c06596 |
Ejemplares similares
-
Prediction of the Least Principal Stresses Using Drilling Data: A Machine Learning Application
por: Gowida, Ahmed, et al.
Publicado: (2021) -
Machine learning application to predict in-situ stresses from logging data
por: Ibrahim, Ahmed Farid, et al.
Publicado: (2021) -
A hybrid data-driven solution to facilitate safe mud window prediction
por: Gowida, Ahmed, et al.
Publicado: (2022) -
Application of Various Machine Learning Techniques in Predicting Total Organic Carbon from Well Logs
por: Siddig, Osama, et al.
Publicado: (2021) -
Newly Developed Correlations to Predict the Rheological Parameters of High-Bentonite Drilling Fluid Using Neural Networks
por: Gowida, Ahmed, et al.
Publicado: (2020)