Cargando…

Pore Structure Characteristics and Their Controlling Factors of Deep Shale: A Case Study of the Lower Silurian Longmaxi Formation in the Luzhou Area, Southern Sichuan Basin

[Image: see text] Recently, deep shale reservoirs are emerging as time requires and commence occupying a significant position in the further development of shale gas. However, the understanding of pore characteristics in deep shale remains poor, prohibiting accurate estimation of the hydrocarbon con...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Yanran, Liu, Xiangui, Cai, Changhong, Hu, Zhiming, Wu, Bo, Mu, Ying, Duan, Xianggang, Zhang, Qingxiu, Zeng, Shuti, Guo, Jingshu, Pu, Zhijin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9088774/
https://www.ncbi.nlm.nih.gov/pubmed/35557656
http://dx.doi.org/10.1021/acsomega.1c06763
Descripción
Sumario:[Image: see text] Recently, deep shale reservoirs are emerging as time requires and commence occupying a significant position in the further development of shale gas. However, the understanding of pore characteristics in deep shale remains poor, prohibiting accurate estimation of the hydrocarbon content and insights into fluid mobility. This study focuses on the Longmaxi Formation from the Luzhou (LZ) region, southern Sichuan. Scanning electron microscopy (SEM), low-temperature N2/CO2 adsorption, X-ray diffraction, and geochemical analysis were performed to investigate the micro–nanopore size distribution, main controlling factors, and unique pore features distinct from other regions. Results showed that the pores can be classified into four categories, organic matter (OM) pores, intergranular pores, intragranular pores, and microfractures, according to SEM images. The total pore volume is overwhelmingly dominated by mesopores and contributed by pores in the range of 0.5–0.6, 2–4, and 10–30 nm. The specific surface area is primarily contributed by micropores and mesopores in the range of 0.5–0.7 and 2–4 nm. By analyzing the influencing factors extensively, it is concluded that the buried depth, geochemical factors, and mineral composition can impact the pore structure in the overmature deep shales. Specifically, the total organic carbon content plays a more effective and positive role in the development of micropores, mesopores, total pores, and the porosity when compared with vitreous reflectance (Ro). The micropores are inferred to be OM-related. On the contrary, clay mineral is detrimental to the development of micropores and mesopores and the petrophysical properties (porosity and permeability), which may be attributed to the occurrence of chlorite and kaolinite instead of illite. The plagioclase conforms to the same law as clay due to their coexistence. Quartz, carbonate minerals, and pyrite can barely contribute to the pores. Eventually, the compared results suggest that the Longmaxi Formation of the LZ region are qualified with a superior pore size distribution, complicated structure, and diverse morphology, implying a potential to generate and store hydrocarbons. Overall, this study improves the understanding of complex pore structures in deep shale and provides significant insights into the development and exploration of unconventional resources in the future.