Cargando…

Expanded LUXendin Color Palette for GLP1R Detection and Visualization In Vitro and In Vivo

[Image: see text] The glucagon-like peptide-1 receptor (GLP1R) is expressed in peripheral tissues and the brain, where it exerts pleiotropic actions on metabolic and inflammatory processes. Detection and visualization of GLP1R remains challenging, partly due to a lack of validated reagents. Previous...

Descripción completa

Detalles Bibliográficos
Autores principales: Ast, Julia, Novak, Alissa N., Podewin, Tom, Fine, Nicholas H. F., Jones, Ben, Tomas, Alejandra, Birke, Ramona, Roßmann, Kilian, Mathes, Bettina, Eichhorst, Jenny, Lehmann, Martin, Linnemann, Amelia K., Hodson, David J., Broichhagen, Johannes
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9088800/
https://www.ncbi.nlm.nih.gov/pubmed/35557759
http://dx.doi.org/10.1021/jacsau.2c00130
_version_ 1784704386682847232
author Ast, Julia
Novak, Alissa N.
Podewin, Tom
Fine, Nicholas H. F.
Jones, Ben
Tomas, Alejandra
Birke, Ramona
Roßmann, Kilian
Mathes, Bettina
Eichhorst, Jenny
Lehmann, Martin
Linnemann, Amelia K.
Hodson, David J.
Broichhagen, Johannes
author_facet Ast, Julia
Novak, Alissa N.
Podewin, Tom
Fine, Nicholas H. F.
Jones, Ben
Tomas, Alejandra
Birke, Ramona
Roßmann, Kilian
Mathes, Bettina
Eichhorst, Jenny
Lehmann, Martin
Linnemann, Amelia K.
Hodson, David J.
Broichhagen, Johannes
author_sort Ast, Julia
collection PubMed
description [Image: see text] The glucagon-like peptide-1 receptor (GLP1R) is expressed in peripheral tissues and the brain, where it exerts pleiotropic actions on metabolic and inflammatory processes. Detection and visualization of GLP1R remains challenging, partly due to a lack of validated reagents. Previously, we generated LUXendins, antagonistic red and far-red fluorescent probes for specific labeling of GLP1R in live and fixed cells/tissues. We now extend this concept to the green and near-infrared color ranges by synthesizing and testing LUXendin492, LUXendin551, LUXendin615, and LUXendin762. All four probes brightly and specifically label GLP1R in cells and pancreatic islets. Further, LUXendin551 acts as a chemical beta cell reporter in preclinical rodent models, while LUXendin762 allows noninvasive imaging, highlighting differentially accessible GLP1R populations. We thus expand the color palette of LUXendins to seven different spectra, opening up a range of experiments using wide-field microscopy available in most labs through super-resolution imaging and whole animal imaging. With this, we expect that LUXendins will continue to generate novel and specific insights into GLP1R biology.
format Online
Article
Text
id pubmed-9088800
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-90888002022-05-11 Expanded LUXendin Color Palette for GLP1R Detection and Visualization In Vitro and In Vivo Ast, Julia Novak, Alissa N. Podewin, Tom Fine, Nicholas H. F. Jones, Ben Tomas, Alejandra Birke, Ramona Roßmann, Kilian Mathes, Bettina Eichhorst, Jenny Lehmann, Martin Linnemann, Amelia K. Hodson, David J. Broichhagen, Johannes JACS Au [Image: see text] The glucagon-like peptide-1 receptor (GLP1R) is expressed in peripheral tissues and the brain, where it exerts pleiotropic actions on metabolic and inflammatory processes. Detection and visualization of GLP1R remains challenging, partly due to a lack of validated reagents. Previously, we generated LUXendins, antagonistic red and far-red fluorescent probes for specific labeling of GLP1R in live and fixed cells/tissues. We now extend this concept to the green and near-infrared color ranges by synthesizing and testing LUXendin492, LUXendin551, LUXendin615, and LUXendin762. All four probes brightly and specifically label GLP1R in cells and pancreatic islets. Further, LUXendin551 acts as a chemical beta cell reporter in preclinical rodent models, while LUXendin762 allows noninvasive imaging, highlighting differentially accessible GLP1R populations. We thus expand the color palette of LUXendins to seven different spectra, opening up a range of experiments using wide-field microscopy available in most labs through super-resolution imaging and whole animal imaging. With this, we expect that LUXendins will continue to generate novel and specific insights into GLP1R biology. American Chemical Society 2022-04-04 /pmc/articles/PMC9088800/ /pubmed/35557759 http://dx.doi.org/10.1021/jacsau.2c00130 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Ast, Julia
Novak, Alissa N.
Podewin, Tom
Fine, Nicholas H. F.
Jones, Ben
Tomas, Alejandra
Birke, Ramona
Roßmann, Kilian
Mathes, Bettina
Eichhorst, Jenny
Lehmann, Martin
Linnemann, Amelia K.
Hodson, David J.
Broichhagen, Johannes
Expanded LUXendin Color Palette for GLP1R Detection and Visualization In Vitro and In Vivo
title Expanded LUXendin Color Palette for GLP1R Detection and Visualization In Vitro and In Vivo
title_full Expanded LUXendin Color Palette for GLP1R Detection and Visualization In Vitro and In Vivo
title_fullStr Expanded LUXendin Color Palette for GLP1R Detection and Visualization In Vitro and In Vivo
title_full_unstemmed Expanded LUXendin Color Palette for GLP1R Detection and Visualization In Vitro and In Vivo
title_short Expanded LUXendin Color Palette for GLP1R Detection and Visualization In Vitro and In Vivo
title_sort expanded luxendin color palette for glp1r detection and visualization in vitro and in vivo
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9088800/
https://www.ncbi.nlm.nih.gov/pubmed/35557759
http://dx.doi.org/10.1021/jacsau.2c00130
work_keys_str_mv AT astjulia expandedluxendincolorpaletteforglp1rdetectionandvisualizationinvitroandinvivo
AT novakalissan expandedluxendincolorpaletteforglp1rdetectionandvisualizationinvitroandinvivo
AT podewintom expandedluxendincolorpaletteforglp1rdetectionandvisualizationinvitroandinvivo
AT finenicholashf expandedluxendincolorpaletteforglp1rdetectionandvisualizationinvitroandinvivo
AT jonesben expandedluxendincolorpaletteforglp1rdetectionandvisualizationinvitroandinvivo
AT tomasalejandra expandedluxendincolorpaletteforglp1rdetectionandvisualizationinvitroandinvivo
AT birkeramona expandedluxendincolorpaletteforglp1rdetectionandvisualizationinvitroandinvivo
AT roßmannkilian expandedluxendincolorpaletteforglp1rdetectionandvisualizationinvitroandinvivo
AT mathesbettina expandedluxendincolorpaletteforglp1rdetectionandvisualizationinvitroandinvivo
AT eichhorstjenny expandedluxendincolorpaletteforglp1rdetectionandvisualizationinvitroandinvivo
AT lehmannmartin expandedluxendincolorpaletteforglp1rdetectionandvisualizationinvitroandinvivo
AT linnemannameliak expandedluxendincolorpaletteforglp1rdetectionandvisualizationinvitroandinvivo
AT hodsondavidj expandedluxendincolorpaletteforglp1rdetectionandvisualizationinvitroandinvivo
AT broichhagenjohannes expandedluxendincolorpaletteforglp1rdetectionandvisualizationinvitroandinvivo