Cargando…
Computational Modeling of the Thermodynamics of the Mesophilic and Thermophilic Mutants of Trp-Cage Miniprotein
[Image: see text] We characterize the folding–unfolding thermodynamics of two mutants of the miniprotein Trp-cage by combining extended molecular dynamics simulations and an advanced statistical–mechanical-based approach. From a set of molecular dynamics simulations in an explicit solvent performed...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9088802/ https://www.ncbi.nlm.nih.gov/pubmed/35559192 http://dx.doi.org/10.1021/acsomega.1c06206 |
_version_ | 1784704387162046464 |
---|---|
author | Bò, Leonardo Milanetti, Edoardo Chen, Cheng Giuseppe Ruocco, Giancarlo Amadei, Andrea D’Abramo, Marco |
author_facet | Bò, Leonardo Milanetti, Edoardo Chen, Cheng Giuseppe Ruocco, Giancarlo Amadei, Andrea D’Abramo, Marco |
author_sort | Bò, Leonardo |
collection | PubMed |
description | [Image: see text] We characterize the folding–unfolding thermodynamics of two mutants of the miniprotein Trp-cage by combining extended molecular dynamics simulations and an advanced statistical–mechanical-based approach. From a set of molecular dynamics simulations in an explicit solvent performed along a reference isobar, we evaluated the structural and thermodynamic behaviors of a mesophilic and a thermophilic mutant of the Trp-cage and their temperature dependence. In the case of the thermophilic mutant, computational data confirm that our theoretical–computational approach is able to reproduce the available experimental estimate with rather good accuracy. On the other hand, the mesophilic mutant does not show a clear two-state (folded and unfolded) behavior, preventing us from reconstructing its thermodynamics; thus, an analysis of its structural behavior along a reference isobar is presented. Our results show that an extended sampling of these kinds of systems coupled to an advanced statistical–mechanical-based treatment of the data can provide an accurate description of the folding–unfolding thermodynamics along a reference isobar, rationalizing the discrepancies between the simulated and experimental systems. |
format | Online Article Text |
id | pubmed-9088802 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-90888022022-05-11 Computational Modeling of the Thermodynamics of the Mesophilic and Thermophilic Mutants of Trp-Cage Miniprotein Bò, Leonardo Milanetti, Edoardo Chen, Cheng Giuseppe Ruocco, Giancarlo Amadei, Andrea D’Abramo, Marco ACS Omega [Image: see text] We characterize the folding–unfolding thermodynamics of two mutants of the miniprotein Trp-cage by combining extended molecular dynamics simulations and an advanced statistical–mechanical-based approach. From a set of molecular dynamics simulations in an explicit solvent performed along a reference isobar, we evaluated the structural and thermodynamic behaviors of a mesophilic and a thermophilic mutant of the Trp-cage and their temperature dependence. In the case of the thermophilic mutant, computational data confirm that our theoretical–computational approach is able to reproduce the available experimental estimate with rather good accuracy. On the other hand, the mesophilic mutant does not show a clear two-state (folded and unfolded) behavior, preventing us from reconstructing its thermodynamics; thus, an analysis of its structural behavior along a reference isobar is presented. Our results show that an extended sampling of these kinds of systems coupled to an advanced statistical–mechanical-based treatment of the data can provide an accurate description of the folding–unfolding thermodynamics along a reference isobar, rationalizing the discrepancies between the simulated and experimental systems. American Chemical Society 2022-04-12 /pmc/articles/PMC9088802/ /pubmed/35559192 http://dx.doi.org/10.1021/acsomega.1c06206 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Bò, Leonardo Milanetti, Edoardo Chen, Cheng Giuseppe Ruocco, Giancarlo Amadei, Andrea D’Abramo, Marco Computational Modeling of the Thermodynamics of the Mesophilic and Thermophilic Mutants of Trp-Cage Miniprotein |
title | Computational Modeling of the Thermodynamics of the
Mesophilic and Thermophilic Mutants of Trp-Cage Miniprotein |
title_full | Computational Modeling of the Thermodynamics of the
Mesophilic and Thermophilic Mutants of Trp-Cage Miniprotein |
title_fullStr | Computational Modeling of the Thermodynamics of the
Mesophilic and Thermophilic Mutants of Trp-Cage Miniprotein |
title_full_unstemmed | Computational Modeling of the Thermodynamics of the
Mesophilic and Thermophilic Mutants of Trp-Cage Miniprotein |
title_short | Computational Modeling of the Thermodynamics of the
Mesophilic and Thermophilic Mutants of Trp-Cage Miniprotein |
title_sort | computational modeling of the thermodynamics of the
mesophilic and thermophilic mutants of trp-cage miniprotein |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9088802/ https://www.ncbi.nlm.nih.gov/pubmed/35559192 http://dx.doi.org/10.1021/acsomega.1c06206 |
work_keys_str_mv | AT boleonardo computationalmodelingofthethermodynamicsofthemesophilicandthermophilicmutantsoftrpcageminiprotein AT milanettiedoardo computationalmodelingofthethermodynamicsofthemesophilicandthermophilicmutantsoftrpcageminiprotein AT chenchenggiuseppe computationalmodelingofthethermodynamicsofthemesophilicandthermophilicmutantsoftrpcageminiprotein AT ruoccogiancarlo computationalmodelingofthethermodynamicsofthemesophilicandthermophilicmutantsoftrpcageminiprotein AT amadeiandrea computationalmodelingofthethermodynamicsofthemesophilicandthermophilicmutantsoftrpcageminiprotein AT dabramomarco computationalmodelingofthethermodynamicsofthemesophilicandthermophilicmutantsoftrpcageminiprotein |