Cargando…

Understanding the Effects of Cross-Linking Density on the Self-Healing Performance of Epoxidized Natural Rubber and Natural Rubber

[Image: see text] The demand for self-healing elastomers is increasing due to the potential opportunities such materials offer in reducing down-time and cost through extended product lifetimes and reduction of waste. However, further understanding of self-healing mechanisms and processes is required...

Descripción completa

Detalles Bibliográficos
Autores principales: Boden, James, Bowen, Chris R., Buchard, Antoine, Davidson, Matthew G., Norris, Chris
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9089743/
https://www.ncbi.nlm.nih.gov/pubmed/35572762
http://dx.doi.org/10.1021/acsomega.2c00971
Descripción
Sumario:[Image: see text] The demand for self-healing elastomers is increasing due to the potential opportunities such materials offer in reducing down-time and cost through extended product lifetimes and reduction of waste. However, further understanding of self-healing mechanisms and processes is required in order to develop a wider range of commercially applicable materials with self-healing properties. Epoxidized natural rubber (ENR) is a derivative of polyisoprene. ENR25 and ENR50 are commercially available materials with 25 and 50 mol % epoxidation, respectively. Recently, reports of the use of ENR in self-healing materials have begun to emerge. However, to date, there has been limited analysis of the self-healing mechanism at the molecular level. The aim of this work is to gain understanding of the relevant self-healing mechanisms through systematic characterization and analysis of the effect of cross-linking on the self-healing performance of ENR and natural rubber (NR). In our study, cross-linking of ENR and NR with dicumyl peroxide and sulfur to provide realistic models of commercial rubber formulations is described, and a cross-linking density of 5 × 10(–5) mol cm(–3) in sulfur-cured ENR is demonstrated to achieve a healing efficiency of 143% for the tensile strength. This work provides the foundation for further modification of ENR, with the goal of understanding and controlling ENR’s self-healing ability for future applications.