Cargando…

Comparative evaluation of the compressive, tensile, and flexural strengths of paracore®, flourocore®2+, and multicore® resin-based core build-up materials – An in vitro study

AIMS: The study was aimed to evaluate and compare the compressive, diametral tensile, and flexural strengths of three different commercial resin based core materials and to single out the best resin-based core build-up material with respect to their physical properties among ParaCore® (Coltene Whale...

Descripción completa

Detalles Bibliográficos
Autores principales: Sharma, Ankita, Shetty, Prashant Purandhar, Ali, Afzal, Bhardwaj, Monika, Dubey, Deepa, Chhabra, Swati
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Wolters Kluwer - Medknow 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9089769/
https://www.ncbi.nlm.nih.gov/pubmed/35558666
http://dx.doi.org/10.4103/jcd.jcd_529_21
Descripción
Sumario:AIMS: The study was aimed to evaluate and compare the compressive, diametral tensile, and flexural strengths of three different commercial resin based core materials and to single out the best resin-based core build-up material with respect to their physical properties among ParaCore® (Coltene Whaledent, USA), FlouroCore® 2+ (Dentsply International, USA), MultiCore® (Ivoclar Vivadent, Liechtenstein) with Miracle Mix® (GC America) core used as control. MATERIALS AND METHODS: One hundred and twenty samples were prepared, of which forty samples (10 of each material) were prepared in cylindrical stainless steel molds (height 6 mm, diameter 4 mm) for compressive strength measurements. Other forty samples (10 of each material) were prepared in cylindrical molds (diameter 6 mm, height 2 mm) for diametral tensile strength measurements. Forty samples (10 of each material) were prepared in stainless steel molds cuboidal in shape (length 25 mm, thickness 2 mm, and width 2 mm) for flexural strength measurements. The samples were tested on a Universal testing machine (Instron Machine 3366, made in the USA). STATISTICAL ANALYSIS USED: One-way analysis of variance was performed to determine any statistically significant differences (P < 0.05) among the resin-based core build-up materials with respect to their three respective strengths. Further, the statistical comparison was made among the four materials using Student's t-test at a significance level of 5%. RESULTS: Based on the results obtained it can be summarized that the ParaCore is the strongest material among all the four materials, followed by MultiCore, FlouroCore2+, and Miracle Mix. The Miracle mix is the weakest among all the materials owing to its inferior strength values. CONCLUSION: The results of the present study imply that, in consideration of their superior strength values, resin-based core build-up materials, ParaCore, MultiCore, and FlouroCore2+ should be a preferred for use as core build-up material over Miracle Mix in specific clinical situations, in the same order of preference.