Cargando…
Surface modification of cellulose nanocrystals with different acid anhydrides for improved dispersion in poly(butylene succinate)
Hydrophilic cellulose nanocrystals (CNC) are typically poorly dispersed in non-polar polymer matrices and, hence, a method for the surface modification of CNC is developed for improving this dispersion. This method included an esterification reaction with acetic anhydride, butyric anhydride, and cap...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9089815/ https://www.ncbi.nlm.nih.gov/pubmed/35559104 http://dx.doi.org/10.1039/c8ra07597b |
_version_ | 1784704594600787968 |
---|---|
author | He, Yingying Zhu, Jiang Wang, Wentao Ni, Haitao |
author_facet | He, Yingying Zhu, Jiang Wang, Wentao Ni, Haitao |
author_sort | He, Yingying |
collection | PubMed |
description | Hydrophilic cellulose nanocrystals (CNC) are typically poorly dispersed in non-polar polymer matrices and, hence, a method for the surface modification of CNC is developed for improving this dispersion. This method included an esterification reaction with acetic anhydride, butyric anhydride, and caproic anhydride. The particle size distribution (range of sizes: 80–310 nm) of CNC was determined. The SEM-EDAX indicated that (i) the structure of CNC was maintained even after incorporation of the acid anhydride and (ii) the carbon C content of modified-CNC was higher than that of pure CNC. The chemical structure of modified-CNC was identified via FT-IR and (13)C NMR spectroscopy. The contact angle of CNC and modified-CNC with water and methylene iodide was measured. The surface energy of modified-CNC was lower than that of pure CNC. Thermal-property measurements indicated that the initial decomposition temperature (based on 5 wt%) of the modified-CNC was slightly higher than that of CNC. Poly(butylene succinate) (PBS) composites were obtained by mixing modified-CNC into a PBS matrix via simple melt blending of a double screw. The PBS/modified-CNC composites were investigated via DSC and XRD. Tensile testing indicated that the tensile modulus improved gradually with increasing modified-CNC content, whereas the elongation at fracture decreased. |
format | Online Article Text |
id | pubmed-9089815 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90898152022-05-11 Surface modification of cellulose nanocrystals with different acid anhydrides for improved dispersion in poly(butylene succinate) He, Yingying Zhu, Jiang Wang, Wentao Ni, Haitao RSC Adv Chemistry Hydrophilic cellulose nanocrystals (CNC) are typically poorly dispersed in non-polar polymer matrices and, hence, a method for the surface modification of CNC is developed for improving this dispersion. This method included an esterification reaction with acetic anhydride, butyric anhydride, and caproic anhydride. The particle size distribution (range of sizes: 80–310 nm) of CNC was determined. The SEM-EDAX indicated that (i) the structure of CNC was maintained even after incorporation of the acid anhydride and (ii) the carbon C content of modified-CNC was higher than that of pure CNC. The chemical structure of modified-CNC was identified via FT-IR and (13)C NMR spectroscopy. The contact angle of CNC and modified-CNC with water and methylene iodide was measured. The surface energy of modified-CNC was lower than that of pure CNC. Thermal-property measurements indicated that the initial decomposition temperature (based on 5 wt%) of the modified-CNC was slightly higher than that of CNC. Poly(butylene succinate) (PBS) composites were obtained by mixing modified-CNC into a PBS matrix via simple melt blending of a double screw. The PBS/modified-CNC composites were investigated via DSC and XRD. Tensile testing indicated that the tensile modulus improved gradually with increasing modified-CNC content, whereas the elongation at fracture decreased. The Royal Society of Chemistry 2018-11-14 /pmc/articles/PMC9089815/ /pubmed/35559104 http://dx.doi.org/10.1039/c8ra07597b Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry He, Yingying Zhu, Jiang Wang, Wentao Ni, Haitao Surface modification of cellulose nanocrystals with different acid anhydrides for improved dispersion in poly(butylene succinate) |
title | Surface modification of cellulose nanocrystals with different acid anhydrides for improved dispersion in poly(butylene succinate) |
title_full | Surface modification of cellulose nanocrystals with different acid anhydrides for improved dispersion in poly(butylene succinate) |
title_fullStr | Surface modification of cellulose nanocrystals with different acid anhydrides for improved dispersion in poly(butylene succinate) |
title_full_unstemmed | Surface modification of cellulose nanocrystals with different acid anhydrides for improved dispersion in poly(butylene succinate) |
title_short | Surface modification of cellulose nanocrystals with different acid anhydrides for improved dispersion in poly(butylene succinate) |
title_sort | surface modification of cellulose nanocrystals with different acid anhydrides for improved dispersion in poly(butylene succinate) |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9089815/ https://www.ncbi.nlm.nih.gov/pubmed/35559104 http://dx.doi.org/10.1039/c8ra07597b |
work_keys_str_mv | AT heyingying surfacemodificationofcellulosenanocrystalswithdifferentacidanhydridesforimproveddispersioninpolybutylenesuccinate AT zhujiang surfacemodificationofcellulosenanocrystalswithdifferentacidanhydridesforimproveddispersioninpolybutylenesuccinate AT wangwentao surfacemodificationofcellulosenanocrystalswithdifferentacidanhydridesforimproveddispersioninpolybutylenesuccinate AT nihaitao surfacemodificationofcellulosenanocrystalswithdifferentacidanhydridesforimproveddispersioninpolybutylenesuccinate |