Cargando…
DeepGANnel: Synthesis of fully annotated single molecule patch-clamp data using generative adversarial networks
Development of automated analysis tools for “single ion channel” recording is hampered by the lack of available training data. For machine learning based tools, very large training sets are necessary with sample-by-sample point labelled data (e.g., 1 sample point every 100microsecond). In an experim...
Autores principales: | Ball, Sam T. M., Celik, Numan, Sayari, Elaheh, Abdul Kadir, Lina, O’Brien, Fiona, Barrett-Jolley, Richard |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9089889/ https://www.ncbi.nlm.nih.gov/pubmed/35536793 http://dx.doi.org/10.1371/journal.pone.0267452 |
Ejemplares similares
-
Deep-Channel uses deep neural networks to detect single-molecule events from patch-clamp data
por: Celik, Numan, et al.
Publicado: (2020) -
Detection Games under Fully Active Adversaries
por: Tondi, Benedetta, et al.
Publicado: (2018) -
Gigaseal formation in patch clamping: with applications of nanotechnology
por: Malboubi, Majid, et al.
Publicado: (2014) -
Cleaning patch-clamp pipettes for immediate reuse
por: Kolb, I., et al.
Publicado: (2016) -
Patch clamp-assisted single neuron lipidomics
por: Merrill, Collin B., et al.
Publicado: (2017)