Cargando…
Novel GBS-Based SNP Markers for Finger Millet and Their Use in Genetic Diversity Analyses
Eleusine coracana (L.) Gaertn., commonly known as finger millet, is a multipurpose crop used for food and feed. Genomic tools are required for the characterization of crop gene pools and their genomics-led breeding. High-throughput sequencing-based characterization of finger millet germplasm represe...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9090224/ https://www.ncbi.nlm.nih.gov/pubmed/35559011 http://dx.doi.org/10.3389/fgene.2022.848627 |
_version_ | 1784704675814047744 |
---|---|
author | Brhane, Haftom Haileselassie, Teklehaimanot Tesfaye, Kassahun Ortiz, Rodomiro Hammenhag, Cecilia Abreha, Kibrom B. Geleta, Mulatu |
author_facet | Brhane, Haftom Haileselassie, Teklehaimanot Tesfaye, Kassahun Ortiz, Rodomiro Hammenhag, Cecilia Abreha, Kibrom B. Geleta, Mulatu |
author_sort | Brhane, Haftom |
collection | PubMed |
description | Eleusine coracana (L.) Gaertn., commonly known as finger millet, is a multipurpose crop used for food and feed. Genomic tools are required for the characterization of crop gene pools and their genomics-led breeding. High-throughput sequencing-based characterization of finger millet germplasm representing diverse agro-ecologies was considered an effective method for determining its genetic diversity, thereby suggesting potential candidates for breeding. In this study, the genotyping-by-sequencing (GBS) method was used to simultaneously identify novel single nucleotide polymorphism (SNP) markers and genotype 288 finger millet accessions collected from Ethiopia and Zimbabwe. The accessions were characterized at individual and group levels using 5,226 bi-allelic SNPs, with a minimum allele frequency (MAF) of above 0.05, distributed across 2,500 scaffolds of the finger millet reference genome. The polymorphism information content (PIC) of the SNPs was 0.23 on average, and a quarter of them have PIC values over 0.32, making them highly informative. The grouping of the 288 accessions into seven populations based on geographic proximity and the potential for germplasm exchange revealed a narrow range of observed heterozygosity (Ho; 0.09–0.11) and expected heterozygosity (He) that ranged over twofold, from 0.11 to 0.26. Alleles unique to the different groups were also identified, which merit further investigation for their potential association with desirable traits. The analysis of molecular variance (AMOVA) revealed a highly significant genetic differentiation among groups of accessions classified based on the geographic region, country of origin, days to flowering, panicle type, and Al tolerance (p < 0.01). The high genetic differentiation between Ethiopian and Zimbabwean accessions was evident in the AMOVA, cluster, principal coordinate, and population structure analyses. The level of genetic diversity of finger millet accessions varies moderately among locations within Ethiopia, with accessions from the northern region having the lowest level. In the neighbor-joining cluster analysis, most of the improved cultivars included in this study were closely clustered, probably because they were developed using genetically less diverse germplasm and/or selected for similar traits, such as grain yield. The recombination of alleles via crossbreeding genetically distinct accessions from different regions of the two countries can potentially lead to the development of superior cultivars. |
format | Online Article Text |
id | pubmed-9090224 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-90902242022-05-11 Novel GBS-Based SNP Markers for Finger Millet and Their Use in Genetic Diversity Analyses Brhane, Haftom Haileselassie, Teklehaimanot Tesfaye, Kassahun Ortiz, Rodomiro Hammenhag, Cecilia Abreha, Kibrom B. Geleta, Mulatu Front Genet Genetics Eleusine coracana (L.) Gaertn., commonly known as finger millet, is a multipurpose crop used for food and feed. Genomic tools are required for the characterization of crop gene pools and their genomics-led breeding. High-throughput sequencing-based characterization of finger millet germplasm representing diverse agro-ecologies was considered an effective method for determining its genetic diversity, thereby suggesting potential candidates for breeding. In this study, the genotyping-by-sequencing (GBS) method was used to simultaneously identify novel single nucleotide polymorphism (SNP) markers and genotype 288 finger millet accessions collected from Ethiopia and Zimbabwe. The accessions were characterized at individual and group levels using 5,226 bi-allelic SNPs, with a minimum allele frequency (MAF) of above 0.05, distributed across 2,500 scaffolds of the finger millet reference genome. The polymorphism information content (PIC) of the SNPs was 0.23 on average, and a quarter of them have PIC values over 0.32, making them highly informative. The grouping of the 288 accessions into seven populations based on geographic proximity and the potential for germplasm exchange revealed a narrow range of observed heterozygosity (Ho; 0.09–0.11) and expected heterozygosity (He) that ranged over twofold, from 0.11 to 0.26. Alleles unique to the different groups were also identified, which merit further investigation for their potential association with desirable traits. The analysis of molecular variance (AMOVA) revealed a highly significant genetic differentiation among groups of accessions classified based on the geographic region, country of origin, days to flowering, panicle type, and Al tolerance (p < 0.01). The high genetic differentiation between Ethiopian and Zimbabwean accessions was evident in the AMOVA, cluster, principal coordinate, and population structure analyses. The level of genetic diversity of finger millet accessions varies moderately among locations within Ethiopia, with accessions from the northern region having the lowest level. In the neighbor-joining cluster analysis, most of the improved cultivars included in this study were closely clustered, probably because they were developed using genetically less diverse germplasm and/or selected for similar traits, such as grain yield. The recombination of alleles via crossbreeding genetically distinct accessions from different regions of the two countries can potentially lead to the development of superior cultivars. Frontiers Media S.A. 2022-04-26 /pmc/articles/PMC9090224/ /pubmed/35559011 http://dx.doi.org/10.3389/fgene.2022.848627 Text en Copyright © 2022 Brhane, Haileselassie, Tesfaye, Ortiz, Hammenhag, Abreha and Geleta. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Genetics Brhane, Haftom Haileselassie, Teklehaimanot Tesfaye, Kassahun Ortiz, Rodomiro Hammenhag, Cecilia Abreha, Kibrom B. Geleta, Mulatu Novel GBS-Based SNP Markers for Finger Millet and Their Use in Genetic Diversity Analyses |
title | Novel GBS-Based SNP Markers for Finger Millet and Their Use in Genetic Diversity Analyses |
title_full | Novel GBS-Based SNP Markers for Finger Millet and Their Use in Genetic Diversity Analyses |
title_fullStr | Novel GBS-Based SNP Markers for Finger Millet and Their Use in Genetic Diversity Analyses |
title_full_unstemmed | Novel GBS-Based SNP Markers for Finger Millet and Their Use in Genetic Diversity Analyses |
title_short | Novel GBS-Based SNP Markers for Finger Millet and Their Use in Genetic Diversity Analyses |
title_sort | novel gbs-based snp markers for finger millet and their use in genetic diversity analyses |
topic | Genetics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9090224/ https://www.ncbi.nlm.nih.gov/pubmed/35559011 http://dx.doi.org/10.3389/fgene.2022.848627 |
work_keys_str_mv | AT brhanehaftom novelgbsbasedsnpmarkersforfingermilletandtheiruseingeneticdiversityanalyses AT haileselassieteklehaimanot novelgbsbasedsnpmarkersforfingermilletandtheiruseingeneticdiversityanalyses AT tesfayekassahun novelgbsbasedsnpmarkersforfingermilletandtheiruseingeneticdiversityanalyses AT ortizrodomiro novelgbsbasedsnpmarkersforfingermilletandtheiruseingeneticdiversityanalyses AT hammenhagcecilia novelgbsbasedsnpmarkersforfingermilletandtheiruseingeneticdiversityanalyses AT abrehakibromb novelgbsbasedsnpmarkersforfingermilletandtheiruseingeneticdiversityanalyses AT geletamulatu novelgbsbasedsnpmarkersforfingermilletandtheiruseingeneticdiversityanalyses |