Cargando…
Estimation of COVID-19 patient numbers using artificial neural networks based on air pollutant concentration levels
The dilemma between health concerns and the economy is apparent in the context of strategic decision making during the pandemic. In particular, estimating the patient numbers and achieving an informed management of the dilemma are crucial in terms of the strategic decisions to be taken. The Covid-19...
Autores principales: | Keskin, Gülşen Aydın, Doğruparmak, Şenay Çetin, Ergün, Kadriye |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9090305/ https://www.ncbi.nlm.nih.gov/pubmed/35538344 http://dx.doi.org/10.1007/s11356-022-20231-z |
Ejemplares similares
-
Modelling of Urban Air Pollutant Concentrations with Artificial Neural Networks Using Novel Input Variables
por: Goulier, Laura, et al.
Publicado: (2020) -
Principal Component Regression and Artificial Neural Network: The Prediction of Air Pollution Index (API)
por: Hua, Ang Kean, et al.
Publicado: (2021) -
Air quality assessment and pollution forecasting using artificial neural networks in Metropolitan Lima-Peru
por: Cordova, Chardin Hoyos, et al.
Publicado: (2021) -
Air Pollutants’ Concentrations Are Associated with Increased Number of RSV Hospitalizations in Polish Children
por: Wrotek, August, et al.
Publicado: (2021) -
Chang impact analysis of level 3 COVID-19 alert on air pollution indicators using artificial neural network
por: Lin, Guan-Yu, et al.
Publicado: (2022)