Cargando…

Who was at risk for COVID-19 late in the US pandemic? Insights from a population health machine learning model

Notable discrepancies in vulnerability to COVID-19 infection have been identified between specific population groups and regions in the USA. The purpose of this study was to estimate the likelihood of COVID-19 infection using a machine-learning algorithm that can be updated continuously based on hea...

Descripción completa

Detalles Bibliográficos
Autores principales: Adeoye, Elijah A., Rozenfeld, Yelena, Beam, Jennifer, Boudreau, Karen, Cox, Emily J., Scanlan, James M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9090454/
https://www.ncbi.nlm.nih.gov/pubmed/35538201
http://dx.doi.org/10.1007/s11517-022-02549-5
Descripción
Sumario:Notable discrepancies in vulnerability to COVID-19 infection have been identified between specific population groups and regions in the USA. The purpose of this study was to estimate the likelihood of COVID-19 infection using a machine-learning algorithm that can be updated continuously based on health care data. Patient records were extracted for all COVID-19 nasal swab PCR tests performed within the Providence St. Joseph Health system from February to October of 2020. A total of 316,599 participants were included in this study, and approximately 7.7% (n = 24,358) tested positive for COVID-19. A gradient boosting model, LightGBM (LGBM), predicted risk of initial infection with an area under the receiver operating characteristic curve of 0.819. Factors that predicted infection were cough, fever, being a member of the Hispanic or Latino community, being Spanish speaking, having a history of diabetes or dementia, and living in a neighborhood with housing insecurity. A model trained on sociodemographic, environmental, and medical history data performed well in predicting risk of a positive COVID-19 test. This model could be used to tailor education, public health policy, and resources for communities that are at the greatest risk of infection. GRAPHICAL ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11517-022-02549-5.