Cargando…
Application of DFT-based machine learning for developing molecular electrode materials in Li-ion batteries
In this study, we utilize a density functional theory-machine learning framework to develop a high-throughput screening method for designing new molecular electrode materials. For this purpose, a density functional theory modeling approach is employed to predict basic quantum mechanical quantities s...
Autores principales: | Allam, Omar, Cho, Byung Woo, Kim, Ki Chul, Jang, Seung Soon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9090775/ https://www.ncbi.nlm.nih.gov/pubmed/35558035 http://dx.doi.org/10.1039/c8ra07112h |
Ejemplares similares
-
Recent advances in the design of cathode materials for Li-ion batteries
por: Mohamed, Nourhan, et al.
Publicado: (2020) -
CuFe(2)S(3) as electrode material for Li-ion batteries
por: Anger, Emmanuel, et al.
Publicado: (2018) -
Atom probe analysis of electrode materials for Li-ion batteries: challenges and ways forward
por: Kim, Se-Ho, et al.
Publicado: (2022) -
LiMg(0.1)Co(0.9)BO(3) as a positive electrode material for Li-ion batteries
por: Zor, Ceren, et al.
Publicado: (2018) -
Electrodes for Li-ion batteries: materials, mechanisms and performance
por: Croguennec, Laurence, et al.
Publicado: (2015)