Cargando…

The difference between semi-continuum model and Richards’ equation for unsaturated porous media flow

Semi-continuum modelling of unsaturated porous media flow is based on representing the porous medium as a grid of non-infinitesimal blocks that retain the character of a porous medium. This approach is similar to the hybrid/multiscale modelling. Semi-continuum model is able to physically correctly d...

Descripción completa

Detalles Bibliográficos
Autores principales: Vodák, Rostislav, Fürst, Tomáš, Šír, Miloslav, Kmec, Jakub
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9090790/
https://www.ncbi.nlm.nih.gov/pubmed/35538096
http://dx.doi.org/10.1038/s41598-022-11437-9
Descripción
Sumario:Semi-continuum modelling of unsaturated porous media flow is based on representing the porous medium as a grid of non-infinitesimal blocks that retain the character of a porous medium. This approach is similar to the hybrid/multiscale modelling. Semi-continuum model is able to physically correctly describe diffusion-like flow, finger-like flow, and the transition between them. This article presents the limit of the semi-continuum model as the block size goes to zero. In the limiting process, the retention curve of each block scales with the block size and in the limit becomes a hysteresis operator of the Prandtl-type used in elasto-plasticity models. Mathematical analysis showed that the limit of the semi-continuum model is a hyperbolic-parabolic partial differential equation with a hysteresis operator of Prandl’s type. This limit differs from the standard Richards’ equation, which is a parabolic equation and is not able to describe finger-like flow.