Cargando…
Algorithmic fairness in pandemic forecasting: lessons from COVID-19
Racial and ethnic minorities have borne a particularly acute burden of the COVID-19 pandemic in the United States. There is a growing awareness from both researchers and public health leaders of the critical need to ensure fairness in forecast results. Without careful and deliberate bias mitigation,...
Autores principales: | Tsai, Thomas C., Arik, Sercan, Jacobson, Benjamin H., Yoon, Jinsung, Yoder, Nate, Sava, Dario, Mitchell, Margaret, Graham, Garth, Pfister, Tomas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9090910/ https://www.ncbi.nlm.nih.gov/pubmed/35538215 http://dx.doi.org/10.1038/s41746-022-00602-z |
Ejemplares similares
-
A prospective evaluation of AI-augmented epidemiology to forecast COVID-19 in the USA and Japan
por: Arık, Sercan Ö., et al.
Publicado: (2021) -
Fairness for Transgender People in Sport
por: Safer, Joshua D
Publicado: (2022) -
Toward FAIR Representations of Microbial Interactions
por: Pacheco, Alan R., et al.
Publicado: (2022) -
Recommendations for Services in a FAIR Data Ecosystem
por: Koers, Hylke, et al.
Publicado: (2020) -
FAIR research data management as community approach in bioengineering
por: Rehnert, Martina, et al.
Publicado: (2022)