Cargando…
Memory-inspired spiking hyperdimensional network for robust online learning
Recently, brain-inspired computing models have shown great potential to outperform today’s deep learning solutions in terms of robustness and energy efficiency. Particularly, Spiking Neural Networks (SNNs) and HyperDimensional Computing (HDC) have shown promising results in enabling efficient and ro...
Autores principales: | Zou, Zhuowen, Alimohamadi, Haleh, Zakeri, Ali, Imani, Farhad, Kim, Yeseong, Najafi, M. Hassan, Imani, Mohsen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9090930/ https://www.ncbi.nlm.nih.gov/pubmed/35538126 http://dx.doi.org/10.1038/s41598-022-11073-3 |
Ejemplares similares
-
EventHD: Robust and efficient hyperdimensional learning with neuromorphic sensor
por: Zou, Zhuowen, et al.
Publicado: (2022) -
GrapHD: Graph-Based Hyperdimensional Memorization for Brain-Like Cognitive Learning
por: Poduval, Prathyush, et al.
Publicado: (2022) -
Achieving software-equivalent accuracy for hyperdimensional computing with ferroelectric-based in-memory computing
por: Kazemi, Arman, et al.
Publicado: (2022) -
Editorial: Brain-inspired Hyperdimensional Computing: Algorithms, models, and architectures
por: Jiao, Xun, et al.
Publicado: (2022) -
Symbolic Representation and Learning With Hyperdimensional Computing
por: Mitrokhin, Anton, et al.
Publicado: (2020)