Cargando…

A short hepatitis C virus NS5A peptide expression by AAV vector modulates human T cell activation and reduces vector immunogenicity

Viral vector-mediated gene therapies have the potential to treat many human diseases; however, host immune responses against the vector and/or the transgene pose a safety risk to the patients and can negatively impact product efficacy. Thus, novel strategies to reduce vector immunogenicity are criti...

Descripción completa

Detalles Bibliográficos
Autores principales: Colon-Moran, Winston, Baer, Alan, Lamture, Gauri, Stapleton, Jack T., Fischer, Joseph W., Bhattarai, Nirjal
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9091046/
https://www.ncbi.nlm.nih.gov/pubmed/34759330
http://dx.doi.org/10.1038/s41434-021-00302-5
Descripción
Sumario:Viral vector-mediated gene therapies have the potential to treat many human diseases; however, host immune responses against the vector and/or the transgene pose a safety risk to the patients and can negatively impact product efficacy. Thus, novel strategies to reduce vector immunogenicity are critical for the advancement of these therapies. T cell activation (TCA) is required for the development of immune responses during gene therapy. We hypothesized that modulation of TCA by incorporating a novel viral immunomodulatory factor into a viral vector may reduce unwanted TCA and immune responses during gene therapy. To test this hypothesis, we identified an immunomodulatory domain of the hepatitis C virus (HCV) NS protein 5A (NS5A) protein and studied the effect of viral vectors expressing NS5A peptide on TCA. Lentiviral vector-mediated expression of a short 20-mer peptide derived from the NS5A protein in human T cells was sufficient to inhibit TCA. Synthetic 20-mer NS5A peptide also inhibited TCA in primary human T cells. Mechanistically, the NS5A protein interacted with Lck and inhibited proximal TCR signaling. Importantly, NS5A peptide expression did not cause global T cell signaling dysfunction as distal T cell signaling was not inhibited. Finally, recombinant adeno-associated virus (AAV) vector expressing the 20-mer NS5A peptide reduced both the recall antigen and the TCR-mediated activation of human T cells and did not cause global T cell signaling dysfunction. Together, these data suggest that expression of a 20-mer NS5A peptide by an AAV vector may reduce unwanted TCA and may contribute to lower vector immunogenicity during gene therapy.