Cargando…
One-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones catalyzed by SO(3)H@imineZCMNPs as a novel, efficient and reusable acidic nanocatalyst under solvent-free conditions
The synthesis of 3,4-dihydropyrimidin-2(1H)-one derivatives was accomplished efficiently via a three-component reaction between ethyl acetoacetate, various types of aldehydes, and urea in the presence of 10 mg SO(3)H@imineZCMNPs as a novel, environment friendly, and reusable heterogeneous magnetic n...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9091268/ https://www.ncbi.nlm.nih.gov/pubmed/35558253 http://dx.doi.org/10.1039/c8ra08622b |
_version_ | 1784704881769054208 |
---|---|
author | Abbaspour-Gilandeh, Esmayeel Yahyazadeh, Asieh Aghaei-Hashjin, Mehraneh |
author_facet | Abbaspour-Gilandeh, Esmayeel Yahyazadeh, Asieh Aghaei-Hashjin, Mehraneh |
author_sort | Abbaspour-Gilandeh, Esmayeel |
collection | PubMed |
description | The synthesis of 3,4-dihydropyrimidin-2(1H)-one derivatives was accomplished efficiently via a three-component reaction between ethyl acetoacetate, various types of aldehydes, and urea in the presence of 10 mg SO(3)H@imineZCMNPs as a novel, environment friendly, and reusable heterogeneous magnetic nanocatalyst under solvent-free conditions at 90 °C. The desired products were obtained with high quantitative yields. The catalyst was separated by simple isolation from the reaction mixture using a permanent magnet and reused several times without any significant loss of catalytic activity. The synthesized catalyst was fully characterized through various techniques including thermogravimetric analysis, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and the Hammett acidity test. This methodology tolerates most substrates and has the salient features of green reaction conditions, lower catalyst loading, high quantitative yields, low cost, the absence of solvents, and easy isolation and reusability of the catalyst. |
format | Online Article Text |
id | pubmed-9091268 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90912682022-05-11 One-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones catalyzed by SO(3)H@imineZCMNPs as a novel, efficient and reusable acidic nanocatalyst under solvent-free conditions Abbaspour-Gilandeh, Esmayeel Yahyazadeh, Asieh Aghaei-Hashjin, Mehraneh RSC Adv Chemistry The synthesis of 3,4-dihydropyrimidin-2(1H)-one derivatives was accomplished efficiently via a three-component reaction between ethyl acetoacetate, various types of aldehydes, and urea in the presence of 10 mg SO(3)H@imineZCMNPs as a novel, environment friendly, and reusable heterogeneous magnetic nanocatalyst under solvent-free conditions at 90 °C. The desired products were obtained with high quantitative yields. The catalyst was separated by simple isolation from the reaction mixture using a permanent magnet and reused several times without any significant loss of catalytic activity. The synthesized catalyst was fully characterized through various techniques including thermogravimetric analysis, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and the Hammett acidity test. This methodology tolerates most substrates and has the salient features of green reaction conditions, lower catalyst loading, high quantitative yields, low cost, the absence of solvents, and easy isolation and reusability of the catalyst. The Royal Society of Chemistry 2018-12-03 /pmc/articles/PMC9091268/ /pubmed/35558253 http://dx.doi.org/10.1039/c8ra08622b Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Abbaspour-Gilandeh, Esmayeel Yahyazadeh, Asieh Aghaei-Hashjin, Mehraneh One-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones catalyzed by SO(3)H@imineZCMNPs as a novel, efficient and reusable acidic nanocatalyst under solvent-free conditions |
title | One-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones catalyzed by SO(3)H@imineZCMNPs as a novel, efficient and reusable acidic nanocatalyst under solvent-free conditions |
title_full | One-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones catalyzed by SO(3)H@imineZCMNPs as a novel, efficient and reusable acidic nanocatalyst under solvent-free conditions |
title_fullStr | One-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones catalyzed by SO(3)H@imineZCMNPs as a novel, efficient and reusable acidic nanocatalyst under solvent-free conditions |
title_full_unstemmed | One-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones catalyzed by SO(3)H@imineZCMNPs as a novel, efficient and reusable acidic nanocatalyst under solvent-free conditions |
title_short | One-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones catalyzed by SO(3)H@imineZCMNPs as a novel, efficient and reusable acidic nanocatalyst under solvent-free conditions |
title_sort | one-pot synthesis of 3,4-dihydropyrimidin-2(1h)-ones catalyzed by so(3)h@iminezcmnps as a novel, efficient and reusable acidic nanocatalyst under solvent-free conditions |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9091268/ https://www.ncbi.nlm.nih.gov/pubmed/35558253 http://dx.doi.org/10.1039/c8ra08622b |
work_keys_str_mv | AT abbaspourgilandehesmayeel onepotsynthesisof34dihydropyrimidin21honescatalyzedbyso3himinezcmnpsasanovelefficientandreusableacidicnanocatalystundersolventfreeconditions AT yahyazadehasieh onepotsynthesisof34dihydropyrimidin21honescatalyzedbyso3himinezcmnpsasanovelefficientandreusableacidicnanocatalystundersolventfreeconditions AT aghaeihashjinmehraneh onepotsynthesisof34dihydropyrimidin21honescatalyzedbyso3himinezcmnpsasanovelefficientandreusableacidicnanocatalystundersolventfreeconditions |