Cargando…

Nanoridge patterns on polymeric film by a photodegradation copying method for metallic nanowire networks

Topographical patterns are widely applied in many manufacturing areas due to the unique role in modifying performance related to physical, chemical and biological fundamentals. The patterns are usually realized by buckling or wrinkling, self-assembly or epitaxy, and lithography techniques. However,...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Jun, Zhang, Shuye, Shi, Zhiyuan, Jiu, Jinting, Wu, Chunhui, Sugahara, Tohru, Nagao, Shijo, Suganuma, Katsuaki, He, Peng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9091417/
https://www.ncbi.nlm.nih.gov/pubmed/35557918
http://dx.doi.org/10.1039/c8ra02249f
Descripción
Sumario:Topographical patterns are widely applied in many manufacturing areas due to the unique role in modifying performance related to physical, chemical and biological fundamentals. The patterns are usually realized by buckling or wrinkling, self-assembly or epitaxy, and lithography techniques. However, the combination of satisfactory controllability, ridge robustness, cost and dimensional precision is still difficult to achieve by any of the strategies above. A novel, simple and low-cost nanopatterning technique named “photodegradation copying method” with high technological flexibility has been initially proposed in this study. As a perfect example, a nanoridge-patterned surface has been successfully realized on a polymeric film thanks to the selective photodegradation of polymer and the shielding effect of silver nanowire (AgNW) networks. Roughness, wettability and transmittance of the polymeric film became simply and effectively controllable by adjusting the photodegradation time or the size and distribution of AgNWs. In addition, the ridge-patterned film could also be employed as a substrate in transfer printing for more flexible devices. Various topographical nanopatterns are expected to be simply realized by the photocopying method, just replacing nanowires with other masks like nanodisks, nanocubes, nanotriangles, and so on. This promising photocopying technique is believed to play an important role in the development of topographical nanopatterns, and enable more intriguing applications simply, flexibly and inexpensively.