Cargando…
Insights into Ag(i)-catalyzed addition reactions of amino alcohols to electron-deficient olefins: competing mechanisms, role of catalyst, and origin of chemoselectivity
The competing mechanisms of Ag(i)-catalyzed chemoselective addition reactions of amino alcohols and electron-deficient olefins leading to the O-adduct or N-adduct products were systematically studied with density functional theory methods. Calculations indicate that the AgHMDS/dppe versus AgOAc/dppe...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9091461/ https://www.ncbi.nlm.nih.gov/pubmed/35558202 http://dx.doi.org/10.1039/c8ra09065c |
_version_ | 1784704929182515200 |
---|---|
author | Liu, Chunhui Han, Peilin Xie, Zhizhong Xu, Zhihong Wei, Donghui |
author_facet | Liu, Chunhui Han, Peilin Xie, Zhizhong Xu, Zhihong Wei, Donghui |
author_sort | Liu, Chunhui |
collection | PubMed |
description | The competing mechanisms of Ag(i)-catalyzed chemoselective addition reactions of amino alcohols and electron-deficient olefins leading to the O-adduct or N-adduct products were systematically studied with density functional theory methods. Calculations indicate that the AgHMDS/dppe versus AgOAc/dppe catalytic systems can play different roles and thereby generate two different products. The AgHMDS/dppe system works as a Brønsted base to deprotonate the amino alcohol OH to form the Ag–O bond, which leads to formation of the O-adduct. In contrast, the AgOAc/dppe system mainly acts as a Lewis acid to coordinate with O and N atoms of the amino alcohol, but it cannot act as the Brønsted base to further activate the OH group because of its weaker basicity. Therefore, the AgOAc/dppe catalyzed reaction has a mechanism that is similar to the non-catalyzed reaction, and generates the same N-adduct. The obtained insights will be important for rational design of the various kinds of cooperatively catalyzed chemoselective addition reactions, including the use of the less nucleophilic hydroxyl groups of unprotected amino alcohols. |
format | Online Article Text |
id | pubmed-9091461 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90914612022-05-11 Insights into Ag(i)-catalyzed addition reactions of amino alcohols to electron-deficient olefins: competing mechanisms, role of catalyst, and origin of chemoselectivity Liu, Chunhui Han, Peilin Xie, Zhizhong Xu, Zhihong Wei, Donghui RSC Adv Chemistry The competing mechanisms of Ag(i)-catalyzed chemoselective addition reactions of amino alcohols and electron-deficient olefins leading to the O-adduct or N-adduct products were systematically studied with density functional theory methods. Calculations indicate that the AgHMDS/dppe versus AgOAc/dppe catalytic systems can play different roles and thereby generate two different products. The AgHMDS/dppe system works as a Brønsted base to deprotonate the amino alcohol OH to form the Ag–O bond, which leads to formation of the O-adduct. In contrast, the AgOAc/dppe system mainly acts as a Lewis acid to coordinate with O and N atoms of the amino alcohol, but it cannot act as the Brønsted base to further activate the OH group because of its weaker basicity. Therefore, the AgOAc/dppe catalyzed reaction has a mechanism that is similar to the non-catalyzed reaction, and generates the same N-adduct. The obtained insights will be important for rational design of the various kinds of cooperatively catalyzed chemoselective addition reactions, including the use of the less nucleophilic hydroxyl groups of unprotected amino alcohols. The Royal Society of Chemistry 2018-12-04 /pmc/articles/PMC9091461/ /pubmed/35558202 http://dx.doi.org/10.1039/c8ra09065c Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Liu, Chunhui Han, Peilin Xie, Zhizhong Xu, Zhihong Wei, Donghui Insights into Ag(i)-catalyzed addition reactions of amino alcohols to electron-deficient olefins: competing mechanisms, role of catalyst, and origin of chemoselectivity |
title | Insights into Ag(i)-catalyzed addition reactions of amino alcohols to electron-deficient olefins: competing mechanisms, role of catalyst, and origin of chemoselectivity |
title_full | Insights into Ag(i)-catalyzed addition reactions of amino alcohols to electron-deficient olefins: competing mechanisms, role of catalyst, and origin of chemoselectivity |
title_fullStr | Insights into Ag(i)-catalyzed addition reactions of amino alcohols to electron-deficient olefins: competing mechanisms, role of catalyst, and origin of chemoselectivity |
title_full_unstemmed | Insights into Ag(i)-catalyzed addition reactions of amino alcohols to electron-deficient olefins: competing mechanisms, role of catalyst, and origin of chemoselectivity |
title_short | Insights into Ag(i)-catalyzed addition reactions of amino alcohols to electron-deficient olefins: competing mechanisms, role of catalyst, and origin of chemoselectivity |
title_sort | insights into ag(i)-catalyzed addition reactions of amino alcohols to electron-deficient olefins: competing mechanisms, role of catalyst, and origin of chemoselectivity |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9091461/ https://www.ncbi.nlm.nih.gov/pubmed/35558202 http://dx.doi.org/10.1039/c8ra09065c |
work_keys_str_mv | AT liuchunhui insightsintoagicatalyzedadditionreactionsofaminoalcoholstoelectrondeficientolefinscompetingmechanismsroleofcatalystandoriginofchemoselectivity AT hanpeilin insightsintoagicatalyzedadditionreactionsofaminoalcoholstoelectrondeficientolefinscompetingmechanismsroleofcatalystandoriginofchemoselectivity AT xiezhizhong insightsintoagicatalyzedadditionreactionsofaminoalcoholstoelectrondeficientolefinscompetingmechanismsroleofcatalystandoriginofchemoselectivity AT xuzhihong insightsintoagicatalyzedadditionreactionsofaminoalcoholstoelectrondeficientolefinscompetingmechanismsroleofcatalystandoriginofchemoselectivity AT weidonghui insightsintoagicatalyzedadditionreactionsofaminoalcoholstoelectrondeficientolefinscompetingmechanismsroleofcatalystandoriginofchemoselectivity |