Cargando…
i2APP: A Two-Step Machine Learning Framework For Antiparasitic Peptides Identification
Parasites can cause enormous damage to their hosts. Studies have shown that antiparasitic peptides can inhibit the growth and development of parasites and even kill them. Because traditional biological methods to determine the activity of antiparasitic peptides are time-consuming and costly, a metho...
Autores principales: | Jiang, Minchao, Zhang, Renfeng, Xia, Yixiao, Jia, Gangyong, Yin, Yuyu, Wang, Pu, Wu, Jian, Ge, Ruiquan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9091563/ https://www.ncbi.nlm.nih.gov/pubmed/35571057 http://dx.doi.org/10.3389/fgene.2022.884589 |
Ejemplares similares
-
EnACP: An Ensemble Learning Model for Identification of Anticancer Peptides
por: Ge, Ruiquan, et al.
Publicado: (2020) -
Editorial: Machine learning for peptide structure, function, and design
por: Ge, Ruiquan, et al.
Publicado: (2022) -
Efficient sequencing data compression and FPGA acceleration based on a two-step framework
por: Chen, Shifu, et al.
Publicado: (2023) -
Genome-wide identification of the TGA genes in common bean (Phaseolus vulgaris) and revealing their functions in response to Fusarium oxysporum f. sp. phaseoli infection
por: Liu, Yu, et al.
Publicado: (2023) -
Multi-label Learning for Predicting the Activities of Antimicrobial Peptides
por: Wang, Pu, et al.
Publicado: (2017)