Cargando…
Toxicity and action mechanisms of silver nanoparticles against the mycotoxin-producing fungus Fusarium graminearum
INTRODUCTION: Fusarium graminearum is a most destructive fungal pathogen that causes Fusarium head blight (FHB) disease in cereal crops, resulting in severe yield loss and mycotoxin contamination in food and feed. Silver nanoparticles (AgNPs) are extensively applied in multiple fields due to their s...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9091762/ https://www.ncbi.nlm.nih.gov/pubmed/35572400 http://dx.doi.org/10.1016/j.jare.2021.09.006 |
_version_ | 1784704999736999936 |
---|---|
author | Jian, Yunqing Chen, Xia Ahmed, Temoor Shang, Qinghua Zhang, Shuai Ma, Zhonghua Yin, Yanni |
author_facet | Jian, Yunqing Chen, Xia Ahmed, Temoor Shang, Qinghua Zhang, Shuai Ma, Zhonghua Yin, Yanni |
author_sort | Jian, Yunqing |
collection | PubMed |
description | INTRODUCTION: Fusarium graminearum is a most destructive fungal pathogen that causes Fusarium head blight (FHB) disease in cereal crops, resulting in severe yield loss and mycotoxin contamination in food and feed. Silver nanoparticles (AgNPs) are extensively applied in multiple fields due to their strong antimicrobial activity and are considered alternatives to fungicides. However, the antifungal mechanisms and the effects of AgNPs on mycotoxin production have not been well characterized. OBJECTIVES: This study aimed to investigate the antifungal activity and mechanisms of AgNPs against both fungicide-resistant and fungicide-sensitive F. graminearum strains, determine their effects on mycotoxin deoxynivalenol (DON) production, and evaluate the potential of AgNPs for FHB management in the field. METHODS: Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and fluorescence microscopy were used to examine the fungal morphological changes caused by AgNPs. In addition, RNA-Seq, qRT-PCR, and western blotting were conducted to detect gene transcription and DON levels. RESULTS: AgNPs with a diameter of 2 nm exhibited effective antifungal activity against both fungicide-sensitive and fungicide-resistant strains of F. graminearum. Further studies showed that AgNP application could impair the development, cell structure, cellular energy utilization, and metabolism pathways of this fungus. RNA-Seq analysis and sensitivity determination revealed that AgNP treatment significantly induced the expression of azole-related ATP-binding cassette (ABC) transporters without compromising the control efficacy of azoles in F. graminearum. AgNP treatment stimulated the generation of reactive oxygen species (ROS), subsequently induced transcription of DON biosynthesis genes, toxisome formation, and mycotoxin production. CONCLUSION: This study revealed the underlying mechanisms of AgNPs against F. graminearum, determined their effects on DON production, and evaluated the potential of AgNPs for controlling fungicide-resistant F. graminearum strains. Together, our findings suggest that combinations of AgNPs with DON-reducing fungicides could be used for the management of FHB in the future. |
format | Online Article Text |
id | pubmed-9091762 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-90917622022-05-12 Toxicity and action mechanisms of silver nanoparticles against the mycotoxin-producing fungus Fusarium graminearum Jian, Yunqing Chen, Xia Ahmed, Temoor Shang, Qinghua Zhang, Shuai Ma, Zhonghua Yin, Yanni J Adv Res Agricultural Science INTRODUCTION: Fusarium graminearum is a most destructive fungal pathogen that causes Fusarium head blight (FHB) disease in cereal crops, resulting in severe yield loss and mycotoxin contamination in food and feed. Silver nanoparticles (AgNPs) are extensively applied in multiple fields due to their strong antimicrobial activity and are considered alternatives to fungicides. However, the antifungal mechanisms and the effects of AgNPs on mycotoxin production have not been well characterized. OBJECTIVES: This study aimed to investigate the antifungal activity and mechanisms of AgNPs against both fungicide-resistant and fungicide-sensitive F. graminearum strains, determine their effects on mycotoxin deoxynivalenol (DON) production, and evaluate the potential of AgNPs for FHB management in the field. METHODS: Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and fluorescence microscopy were used to examine the fungal morphological changes caused by AgNPs. In addition, RNA-Seq, qRT-PCR, and western blotting were conducted to detect gene transcription and DON levels. RESULTS: AgNPs with a diameter of 2 nm exhibited effective antifungal activity against both fungicide-sensitive and fungicide-resistant strains of F. graminearum. Further studies showed that AgNP application could impair the development, cell structure, cellular energy utilization, and metabolism pathways of this fungus. RNA-Seq analysis and sensitivity determination revealed that AgNP treatment significantly induced the expression of azole-related ATP-binding cassette (ABC) transporters without compromising the control efficacy of azoles in F. graminearum. AgNP treatment stimulated the generation of reactive oxygen species (ROS), subsequently induced transcription of DON biosynthesis genes, toxisome formation, and mycotoxin production. CONCLUSION: This study revealed the underlying mechanisms of AgNPs against F. graminearum, determined their effects on DON production, and evaluated the potential of AgNPs for controlling fungicide-resistant F. graminearum strains. Together, our findings suggest that combinations of AgNPs with DON-reducing fungicides could be used for the management of FHB in the future. Elsevier 2021-09-17 /pmc/articles/PMC9091762/ /pubmed/35572400 http://dx.doi.org/10.1016/j.jare.2021.09.006 Text en © 2022 The Authors. Published by Elsevier B.V. on behalf of Cairo University. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Agricultural Science Jian, Yunqing Chen, Xia Ahmed, Temoor Shang, Qinghua Zhang, Shuai Ma, Zhonghua Yin, Yanni Toxicity and action mechanisms of silver nanoparticles against the mycotoxin-producing fungus Fusarium graminearum |
title | Toxicity and action mechanisms of silver nanoparticles against the mycotoxin-producing fungus Fusarium graminearum |
title_full | Toxicity and action mechanisms of silver nanoparticles against the mycotoxin-producing fungus Fusarium graminearum |
title_fullStr | Toxicity and action mechanisms of silver nanoparticles against the mycotoxin-producing fungus Fusarium graminearum |
title_full_unstemmed | Toxicity and action mechanisms of silver nanoparticles against the mycotoxin-producing fungus Fusarium graminearum |
title_short | Toxicity and action mechanisms of silver nanoparticles against the mycotoxin-producing fungus Fusarium graminearum |
title_sort | toxicity and action mechanisms of silver nanoparticles against the mycotoxin-producing fungus fusarium graminearum |
topic | Agricultural Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9091762/ https://www.ncbi.nlm.nih.gov/pubmed/35572400 http://dx.doi.org/10.1016/j.jare.2021.09.006 |
work_keys_str_mv | AT jianyunqing toxicityandactionmechanismsofsilvernanoparticlesagainstthemycotoxinproducingfungusfusariumgraminearum AT chenxia toxicityandactionmechanismsofsilvernanoparticlesagainstthemycotoxinproducingfungusfusariumgraminearum AT ahmedtemoor toxicityandactionmechanismsofsilvernanoparticlesagainstthemycotoxinproducingfungusfusariumgraminearum AT shangqinghua toxicityandactionmechanismsofsilvernanoparticlesagainstthemycotoxinproducingfungusfusariumgraminearum AT zhangshuai toxicityandactionmechanismsofsilvernanoparticlesagainstthemycotoxinproducingfungusfusariumgraminearum AT mazhonghua toxicityandactionmechanismsofsilvernanoparticlesagainstthemycotoxinproducingfungusfusariumgraminearum AT yinyanni toxicityandactionmechanismsofsilvernanoparticlesagainstthemycotoxinproducingfungusfusariumgraminearum |