Cargando…

Evolution of cooperation and trust in an N-player social dilemma game with tags for migration decisions

We present an evolutionary game model that integrates the concept of tags, trust and migration to study how trust in social and physical groups influence cooperation and migration decisions. All agents have a tag, and they gain or lose trust in other tags as they interact with other agents. This tru...

Descripción completa

Detalles Bibliográficos
Autores principales: Dhakal, Sandeep, Chiong, Raymond, Chica, Manuel, Han, The Anh
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9091842/
https://www.ncbi.nlm.nih.gov/pubmed/35582657
http://dx.doi.org/10.1098/rsos.212000
Descripción
Sumario:We present an evolutionary game model that integrates the concept of tags, trust and migration to study how trust in social and physical groups influence cooperation and migration decisions. All agents have a tag, and they gain or lose trust in other tags as they interact with other agents. This trust in different tags determines their trust in other players and groups. In contrast to other models in the literature, our model does not use tags to determine the cooperation/defection decisions of the agents, but rather their migration decisions. Agents decide whether to cooperate or defect based purely on social learning (i.e. imitation from others). Agents use information about tags and their trust in tags to determine how much they trust a particular group of agents and whether they want to migrate to that group. Comprehensive experiments show that the model can promote high levels of cooperation and trust under different game scenarios, and that curbing the migration decisions of agents can negatively impact both cooperation and trust in the system. We also observed that trust becomes scarce in the system as the diversity of tags increases. This work is one of the first to study the impact of tags on trust in the system and migration behaviour of the agents using evolutionary game theory.