Cargando…
Robust Latent Multi-Source Adaptation for Encephalogram-Based Emotion Recognition
In practical encephalogram (EEG)-based machine learning, different subjects can be represented by many different EEG patterns, which would, in some extent, degrade the performance of extant subject-independent classifiers obtained from cross-subjects datasets. To this end, in this paper, we present...
Autores principales: | Tao, Jianwen, Dan, Yufang, Zhou, Di, He, Songsong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9091911/ https://www.ncbi.nlm.nih.gov/pubmed/35573289 http://dx.doi.org/10.3389/fnins.2022.850906 |
Ejemplares similares
-
Multi-Source Co-adaptation for EEG-Based Emotion Recognition by Mining Correlation Information
por: Tao, Jianwen, et al.
Publicado: (2021) -
Multi-Model Adaptation Learning With Possibilistic Clustering Assumption for EEG-Based Emotion Recognition
por: Dan, Yufang, et al.
Publicado: (2022) -
The Normal Encephalogram
Publicado: (1937) -
Local domain generalization with low-rank constraint for EEG-based emotion recognition
por: Tao, Jianwen, et al.
Publicado: (2023) -
Possibilistic distribution distance metric: a robust domain adaptation learning method
por: Tao, Jianwen, et al.
Publicado: (2023)