Cargando…
Use of Multi-Modal Data and Machine Learning to Improve Cardiovascular Disease Care
Today's digital health revolution aims to improve the efficiency of healthcare delivery and make care more personalized and timely. Sources of data for digital health tools include multiple modalities such as electronic medical records (EMR), radiology images, and genetic repositories, to name...
Autores principales: | Amal, Saeed, Safarnejad, Lida, Omiye, Jesutofunmi A., Ghanzouri, Ilies, Cabot, John Hanson, Ross, Elsie Gyang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9091962/ https://www.ncbi.nlm.nih.gov/pubmed/35571171 http://dx.doi.org/10.3389/fcvm.2022.840262 |
Ejemplares similares
-
Physician- and Patient-Elicited Barriers and Facilitators to Implementation of a Machine Learning–Based Screening Tool for Peripheral Arterial Disease: Preimplementation Study With Physician and Patient Stakeholders
por: Ho, Vy, et al.
Publicado: (2023) -
Cardiovascular manifestations identified by multi-modality imaging in patients with long COVID
por: Murata, Nobuhiro, et al.
Publicado: (2022) -
Principles, applications, and future of artificial intelligence in dermatology
por: Omiye, Jesutofunmi A., et al.
Publicado: (2023) -
Performance and usability testing of an automated tool for detection of peripheral artery disease using electronic health records
por: Ghanzouri, I., et al.
Publicado: (2022) -
Multi-Modality Imaging for Interventions in Tricuspid Valve Disease
por: Fortuni, Federico, et al.
Publicado: (2021)