Cargando…

Atomistic investigation of an Iowa Amyloid-β trimer in aqueous solution

The self-assembly of Amyloid beta (Aβ) peptides are widely accepted to associate with Alzheimer's disease (AD) via several proposed mechanisms. Because Aβ oligomers exist in a complicated environment consisting of various forms of Aβ, including oligomers, protofibrils, and fibrils, their struct...

Descripción completa

Detalles Bibliográficos
Autores principales: Ngo, Son Tung, Thu Phung, Huong Thi, Vu, Khanh B., Vu, Van V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9091969/
https://www.ncbi.nlm.nih.gov/pubmed/35558787
http://dx.doi.org/10.1039/c8ra07615d
_version_ 1784705040056844288
author Ngo, Son Tung
Thu Phung, Huong Thi
Vu, Khanh B.
Vu, Van V.
author_facet Ngo, Son Tung
Thu Phung, Huong Thi
Vu, Khanh B.
Vu, Van V.
author_sort Ngo, Son Tung
collection PubMed
description The self-assembly of Amyloid beta (Aβ) peptides are widely accepted to associate with Alzheimer's disease (AD) via several proposed mechanisms. Because Aβ oligomers exist in a complicated environment consisting of various forms of Aβ, including oligomers, protofibrils, and fibrils, their structure has not been well understood. The negatively charged residue D23 is one of the critical residues of the Aβ peptide as it is located in the central hydrophobic domain of the Aβ N-terminal and forms a salt-bridge D23-K28, which helps stabilize the loop domain. In the familial Iowa (D23N) mutant, the total net charge of Aβ oligomers decreases, resulting in the decrease of electrostatic repulsion between D23N Aβ monomers and thus the increase in their self-aggregation rate. In this work, the impact of the D23N mutation on 3Aβ(11–40) trimer was characterized utilizing temperature replica exchange molecular dynamics (REMD) simulations. Our simulation reveals that D23N mutation significantly enhances the affinity between the constituting chains in the trimer, increases the β-content (especially in the sequence 21–23), and shifts the β-strand hydrophobic core from crossing arrangement to parallel arrangement, which is consistent with the increase in self-aggregation rate. Molecular docking indicates that the Aβ fibril-binding ligands bind to the D23N and WT forms at different poses. These compounds prefer to bind to the N-terminal β-strand of the D23N mutant trimer, while they mostly bind to the N-terminal loop region of the WT. It is important to take into account the difference in the binding of ligands to mutant and wild type Aβ peptides in designing efficient inhibitors for various types of AD.
format Online
Article
Text
id pubmed-9091969
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-90919692022-05-11 Atomistic investigation of an Iowa Amyloid-β trimer in aqueous solution Ngo, Son Tung Thu Phung, Huong Thi Vu, Khanh B. Vu, Van V. RSC Adv Chemistry The self-assembly of Amyloid beta (Aβ) peptides are widely accepted to associate with Alzheimer's disease (AD) via several proposed mechanisms. Because Aβ oligomers exist in a complicated environment consisting of various forms of Aβ, including oligomers, protofibrils, and fibrils, their structure has not been well understood. The negatively charged residue D23 is one of the critical residues of the Aβ peptide as it is located in the central hydrophobic domain of the Aβ N-terminal and forms a salt-bridge D23-K28, which helps stabilize the loop domain. In the familial Iowa (D23N) mutant, the total net charge of Aβ oligomers decreases, resulting in the decrease of electrostatic repulsion between D23N Aβ monomers and thus the increase in their self-aggregation rate. In this work, the impact of the D23N mutation on 3Aβ(11–40) trimer was characterized utilizing temperature replica exchange molecular dynamics (REMD) simulations. Our simulation reveals that D23N mutation significantly enhances the affinity between the constituting chains in the trimer, increases the β-content (especially in the sequence 21–23), and shifts the β-strand hydrophobic core from crossing arrangement to parallel arrangement, which is consistent with the increase in self-aggregation rate. Molecular docking indicates that the Aβ fibril-binding ligands bind to the D23N and WT forms at different poses. These compounds prefer to bind to the N-terminal β-strand of the D23N mutant trimer, while they mostly bind to the N-terminal loop region of the WT. It is important to take into account the difference in the binding of ligands to mutant and wild type Aβ peptides in designing efficient inhibitors for various types of AD. The Royal Society of Chemistry 2018-12-13 /pmc/articles/PMC9091969/ /pubmed/35558787 http://dx.doi.org/10.1039/c8ra07615d Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/
spellingShingle Chemistry
Ngo, Son Tung
Thu Phung, Huong Thi
Vu, Khanh B.
Vu, Van V.
Atomistic investigation of an Iowa Amyloid-β trimer in aqueous solution
title Atomistic investigation of an Iowa Amyloid-β trimer in aqueous solution
title_full Atomistic investigation of an Iowa Amyloid-β trimer in aqueous solution
title_fullStr Atomistic investigation of an Iowa Amyloid-β trimer in aqueous solution
title_full_unstemmed Atomistic investigation of an Iowa Amyloid-β trimer in aqueous solution
title_short Atomistic investigation of an Iowa Amyloid-β trimer in aqueous solution
title_sort atomistic investigation of an iowa amyloid-β trimer in aqueous solution
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9091969/
https://www.ncbi.nlm.nih.gov/pubmed/35558787
http://dx.doi.org/10.1039/c8ra07615d
work_keys_str_mv AT ngosontung atomisticinvestigationofaniowaamyloidbtrimerinaqueoussolution
AT thuphunghuongthi atomisticinvestigationofaniowaamyloidbtrimerinaqueoussolution
AT vukhanhb atomisticinvestigationofaniowaamyloidbtrimerinaqueoussolution
AT vuvanv atomisticinvestigationofaniowaamyloidbtrimerinaqueoussolution