Cargando…

Reutilization of nanosecond pulse laser energy and its performance in single particle triggered LIBS

A method that can reutilize the energy of a nanosecond pulse laser beam and its performance in single particle triggered laser induced breakdown spectroscopy (LIBS) were studied. The propagation direction of the laser beam (Nd-YAG laser, 1064 nm, 9 ns and 0–80 mJ) was changed in an appropriate way a...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Pingwei, Zhu, Yu, Li, Shengfu, Zhu, Li-guo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9092059/
https://www.ncbi.nlm.nih.gov/pubmed/35558772
http://dx.doi.org/10.1039/c8ra06985a
_version_ 1784705061762367488
author Zhou, Pingwei
Zhu, Yu
Li, Shengfu
Zhu, Li-guo
author_facet Zhou, Pingwei
Zhu, Yu
Li, Shengfu
Zhu, Li-guo
author_sort Zhou, Pingwei
collection PubMed
description A method that can reutilize the energy of a nanosecond pulse laser beam and its performance in single particle triggered laser induced breakdown spectroscopy (LIBS) were studied. The propagation direction of the laser beam (Nd-YAG laser, 1064 nm, 9 ns and 0–80 mJ) was changed in an appropriate way and the energy overlapped at one point in space. In this setup, the energy used to break down pure air was reduced by 25% and the emission intensity of air plasma improved by 220% under the same pulse energy. Besides, the plasma temperature estimated by the relative line-to-continuum intensity ratio was improved by almost 900 K at 20 mJ. Furthermore, this method was applied in single particle triggered LIBS. NaCl particles with a diameter of ∼10 μm were used as the target sample and the scattered light of an 808 nm continuous laser beam was employed as a trigger signal to trigger the Nd-YAG laser. The emission line intensity of Na element was enhanced by 200%. This method can not only improve the emission intensity of a gas sample but can also be applied to single particle samples and has great significance in the application of ns-LIBS and the research and development of portable LIBS equipment.
format Online
Article
Text
id pubmed-9092059
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-90920592022-05-11 Reutilization of nanosecond pulse laser energy and its performance in single particle triggered LIBS Zhou, Pingwei Zhu, Yu Li, Shengfu Zhu, Li-guo RSC Adv Chemistry A method that can reutilize the energy of a nanosecond pulse laser beam and its performance in single particle triggered laser induced breakdown spectroscopy (LIBS) were studied. The propagation direction of the laser beam (Nd-YAG laser, 1064 nm, 9 ns and 0–80 mJ) was changed in an appropriate way and the energy overlapped at one point in space. In this setup, the energy used to break down pure air was reduced by 25% and the emission intensity of air plasma improved by 220% under the same pulse energy. Besides, the plasma temperature estimated by the relative line-to-continuum intensity ratio was improved by almost 900 K at 20 mJ. Furthermore, this method was applied in single particle triggered LIBS. NaCl particles with a diameter of ∼10 μm were used as the target sample and the scattered light of an 808 nm continuous laser beam was employed as a trigger signal to trigger the Nd-YAG laser. The emission line intensity of Na element was enhanced by 200%. This method can not only improve the emission intensity of a gas sample but can also be applied to single particle samples and has great significance in the application of ns-LIBS and the research and development of portable LIBS equipment. The Royal Society of Chemistry 2018-12-17 /pmc/articles/PMC9092059/ /pubmed/35558772 http://dx.doi.org/10.1039/c8ra06985a Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/
spellingShingle Chemistry
Zhou, Pingwei
Zhu, Yu
Li, Shengfu
Zhu, Li-guo
Reutilization of nanosecond pulse laser energy and its performance in single particle triggered LIBS
title Reutilization of nanosecond pulse laser energy and its performance in single particle triggered LIBS
title_full Reutilization of nanosecond pulse laser energy and its performance in single particle triggered LIBS
title_fullStr Reutilization of nanosecond pulse laser energy and its performance in single particle triggered LIBS
title_full_unstemmed Reutilization of nanosecond pulse laser energy and its performance in single particle triggered LIBS
title_short Reutilization of nanosecond pulse laser energy and its performance in single particle triggered LIBS
title_sort reutilization of nanosecond pulse laser energy and its performance in single particle triggered libs
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9092059/
https://www.ncbi.nlm.nih.gov/pubmed/35558772
http://dx.doi.org/10.1039/c8ra06985a
work_keys_str_mv AT zhoupingwei reutilizationofnanosecondpulselaserenergyanditsperformanceinsingleparticletriggeredlibs
AT zhuyu reutilizationofnanosecondpulselaserenergyanditsperformanceinsingleparticletriggeredlibs
AT lishengfu reutilizationofnanosecondpulselaserenergyanditsperformanceinsingleparticletriggeredlibs
AT zhuliguo reutilizationofnanosecondpulselaserenergyanditsperformanceinsingleparticletriggeredlibs