Cargando…
Reutilization of nanosecond pulse laser energy and its performance in single particle triggered LIBS
A method that can reutilize the energy of a nanosecond pulse laser beam and its performance in single particle triggered laser induced breakdown spectroscopy (LIBS) were studied. The propagation direction of the laser beam (Nd-YAG laser, 1064 nm, 9 ns and 0–80 mJ) was changed in an appropriate way a...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9092059/ https://www.ncbi.nlm.nih.gov/pubmed/35558772 http://dx.doi.org/10.1039/c8ra06985a |
_version_ | 1784705061762367488 |
---|---|
author | Zhou, Pingwei Zhu, Yu Li, Shengfu Zhu, Li-guo |
author_facet | Zhou, Pingwei Zhu, Yu Li, Shengfu Zhu, Li-guo |
author_sort | Zhou, Pingwei |
collection | PubMed |
description | A method that can reutilize the energy of a nanosecond pulse laser beam and its performance in single particle triggered laser induced breakdown spectroscopy (LIBS) were studied. The propagation direction of the laser beam (Nd-YAG laser, 1064 nm, 9 ns and 0–80 mJ) was changed in an appropriate way and the energy overlapped at one point in space. In this setup, the energy used to break down pure air was reduced by 25% and the emission intensity of air plasma improved by 220% under the same pulse energy. Besides, the plasma temperature estimated by the relative line-to-continuum intensity ratio was improved by almost 900 K at 20 mJ. Furthermore, this method was applied in single particle triggered LIBS. NaCl particles with a diameter of ∼10 μm were used as the target sample and the scattered light of an 808 nm continuous laser beam was employed as a trigger signal to trigger the Nd-YAG laser. The emission line intensity of Na element was enhanced by 200%. This method can not only improve the emission intensity of a gas sample but can also be applied to single particle samples and has great significance in the application of ns-LIBS and the research and development of portable LIBS equipment. |
format | Online Article Text |
id | pubmed-9092059 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90920592022-05-11 Reutilization of nanosecond pulse laser energy and its performance in single particle triggered LIBS Zhou, Pingwei Zhu, Yu Li, Shengfu Zhu, Li-guo RSC Adv Chemistry A method that can reutilize the energy of a nanosecond pulse laser beam and its performance in single particle triggered laser induced breakdown spectroscopy (LIBS) were studied. The propagation direction of the laser beam (Nd-YAG laser, 1064 nm, 9 ns and 0–80 mJ) was changed in an appropriate way and the energy overlapped at one point in space. In this setup, the energy used to break down pure air was reduced by 25% and the emission intensity of air plasma improved by 220% under the same pulse energy. Besides, the plasma temperature estimated by the relative line-to-continuum intensity ratio was improved by almost 900 K at 20 mJ. Furthermore, this method was applied in single particle triggered LIBS. NaCl particles with a diameter of ∼10 μm were used as the target sample and the scattered light of an 808 nm continuous laser beam was employed as a trigger signal to trigger the Nd-YAG laser. The emission line intensity of Na element was enhanced by 200%. This method can not only improve the emission intensity of a gas sample but can also be applied to single particle samples and has great significance in the application of ns-LIBS and the research and development of portable LIBS equipment. The Royal Society of Chemistry 2018-12-17 /pmc/articles/PMC9092059/ /pubmed/35558772 http://dx.doi.org/10.1039/c8ra06985a Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Zhou, Pingwei Zhu, Yu Li, Shengfu Zhu, Li-guo Reutilization of nanosecond pulse laser energy and its performance in single particle triggered LIBS |
title | Reutilization of nanosecond pulse laser energy and its performance in single particle triggered LIBS |
title_full | Reutilization of nanosecond pulse laser energy and its performance in single particle triggered LIBS |
title_fullStr | Reutilization of nanosecond pulse laser energy and its performance in single particle triggered LIBS |
title_full_unstemmed | Reutilization of nanosecond pulse laser energy and its performance in single particle triggered LIBS |
title_short | Reutilization of nanosecond pulse laser energy and its performance in single particle triggered LIBS |
title_sort | reutilization of nanosecond pulse laser energy and its performance in single particle triggered libs |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9092059/ https://www.ncbi.nlm.nih.gov/pubmed/35558772 http://dx.doi.org/10.1039/c8ra06985a |
work_keys_str_mv | AT zhoupingwei reutilizationofnanosecondpulselaserenergyanditsperformanceinsingleparticletriggeredlibs AT zhuyu reutilizationofnanosecondpulselaserenergyanditsperformanceinsingleparticletriggeredlibs AT lishengfu reutilizationofnanosecondpulselaserenergyanditsperformanceinsingleparticletriggeredlibs AT zhuliguo reutilizationofnanosecondpulselaserenergyanditsperformanceinsingleparticletriggeredlibs |