Cargando…
On the road to explainable AI in drug-drug interactions prediction: A systematic review
Over the past decade, polypharmacy instances have been common in multi-diseases treatment. However, unwanted drug-drug interactions (DDIs) that might cause unexpected adverse drug events (ADEs) in multiple regimens therapy remain a significant issue. Since artificial intelligence (AI) is ubiquitous...
Autores principales: | Vo, Thanh Hoa, Nguyen, Ngan Thi Kim, Kha, Quang Hien, Le, Nguyen Quoc Khanh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9092071/ https://www.ncbi.nlm.nih.gov/pubmed/35832629 http://dx.doi.org/10.1016/j.csbj.2022.04.021 |
Ejemplares similares
-
Development and Validation of an Explainable Machine Learning-Based Prediction Model for Drug–Food Interactions from Chemical Structures
por: Kha, Quang-Hien, et al.
Publicado: (2023) -
Identifying SNARE
Proteins Using an Alignment-Free
Method Based on Multiscan Convolutional Neural Network and PSSM Profiles
por: Kha, Quang-Hien, et al.
Publicado: (2022) -
Risk Score Generated from CT-Based Radiomics Signatures for Overall Survival Prediction in Non-Small Cell Lung Cancer
por: Le, Viet-Huan, et al.
Publicado: (2021) -
Development and Validation of an Efficient MRI Radiomics Signature for Improving the Predictive Performance of 1p/19q Co-Deletion in Lower-Grade Gliomas
por: Kha, Quang-Hien, et al.
Publicado: (2021) -
Machine Learning-Based Prediction of Drug-Drug Interactions for Histamine Antagonist Using Hybrid Chemical Features
por: Dang, Luong Huu, et al.
Publicado: (2021)