Cargando…
PET/CT Based EGFR Mutation Status Classification of NSCLC Using Deep Learning Features and Radiomics Features
Purpose: This study aimed to compare the performance of radiomics and deep learning in predicting EGFR mutation status in patients with lung cancer based on PET/CT images, and tried to explore a model with excellent prediction performance to accurately predict EGFR mutation status in patients with n...
Autores principales: | Huang, Weicheng, Wang, Jingyi, Wang, Haolin, Zhang, Yuxiang, Zhao, Fengjun, Li, Kang, Su, Linzhi, Kang, Fei, Cao, Xin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9092283/ https://www.ncbi.nlm.nih.gov/pubmed/35571081 http://dx.doi.org/10.3389/fphar.2022.898529 |
Ejemplares similares
-
PET/CT Radiomic Features: A Potential Biomarker for EGFR Mutation Status and Survival Outcome Prediction in NSCLC Patients Treated With TKIs
por: Yang, Liping, et al.
Publicado: (2022) -
Establishment and Optimization of Radiomics Algorithms for Prediction of KRAS Gene Mutation by Integration of NSCLC Gene Mutation Mutual Exclusion Information
por: Wang, Jingyi, et al.
Publicado: (2022) -
Predicting EGFR mutation subtypes in lung adenocarcinoma using (18)F-FDG PET/CT radiomic features
por: Liu, Qiufang, et al.
Publicado: (2020) -
Role of Radiomics Features and Machine Learning for the Histological Classification of Stage I and Stage II NSCLC at [(18)F]FDG PET/CT: A Comparison between Two PET/CT Scanners
por: Dondi, Francesco, et al.
Publicado: (2022) -
Value of CT Radiomics and Clinical Features in Predicting Bone Metastases in Patients with NSCLC
por: Chen, Lu, et al.
Publicado: (2022)