Cargando…
Improving Few- and Zero-Shot Reaction Template Prediction Using Modern Hopfield Networks
[Image: see text] Finding synthesis routes for molecules of interest is essential in the discovery of new drugs and materials. To find such routes, computer-assisted synthesis planning (CASP) methods are employed, which rely on a single-step model of chemical reactivity. In this study, we introduce...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9092346/ https://www.ncbi.nlm.nih.gov/pubmed/35034452 http://dx.doi.org/10.1021/acs.jcim.1c01065 |
_version_ | 1784705121690583040 |
---|---|
author | Seidl, Philipp Renz, Philipp Dyubankova, Natalia Neves, Paulo Verhoeven, Jonas Wegner, Jörg K. Segler, Marwin Hochreiter, Sepp Klambauer, Günter |
author_facet | Seidl, Philipp Renz, Philipp Dyubankova, Natalia Neves, Paulo Verhoeven, Jonas Wegner, Jörg K. Segler, Marwin Hochreiter, Sepp Klambauer, Günter |
author_sort | Seidl, Philipp |
collection | PubMed |
description | [Image: see text] Finding synthesis routes for molecules of interest is essential in the discovery of new drugs and materials. To find such routes, computer-assisted synthesis planning (CASP) methods are employed, which rely on a single-step model of chemical reactivity. In this study, we introduce a template-based single-step retrosynthesis model based on Modern Hopfield Networks, which learn an encoding of both molecules and reaction templates in order to predict the relevance of templates for a given molecule. The template representation allows generalization across different reactions and significantly improves the performance of template relevance prediction, especially for templates with few or zero training examples. With inference speed up to orders of magnitude faster than baseline methods, we improve or match the state-of-the-art performance for top-k exact match accuracy for k ≥ 3 in the retrosynthesis benchmark USPTO-50k. Code to reproduce the results is available at github.com/ml-jku/mhn-react. |
format | Online Article Text |
id | pubmed-9092346 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-90923462022-05-11 Improving Few- and Zero-Shot Reaction Template Prediction Using Modern Hopfield Networks Seidl, Philipp Renz, Philipp Dyubankova, Natalia Neves, Paulo Verhoeven, Jonas Wegner, Jörg K. Segler, Marwin Hochreiter, Sepp Klambauer, Günter J Chem Inf Model [Image: see text] Finding synthesis routes for molecules of interest is essential in the discovery of new drugs and materials. To find such routes, computer-assisted synthesis planning (CASP) methods are employed, which rely on a single-step model of chemical reactivity. In this study, we introduce a template-based single-step retrosynthesis model based on Modern Hopfield Networks, which learn an encoding of both molecules and reaction templates in order to predict the relevance of templates for a given molecule. The template representation allows generalization across different reactions and significantly improves the performance of template relevance prediction, especially for templates with few or zero training examples. With inference speed up to orders of magnitude faster than baseline methods, we improve or match the state-of-the-art performance for top-k exact match accuracy for k ≥ 3 in the retrosynthesis benchmark USPTO-50k. Code to reproduce the results is available at github.com/ml-jku/mhn-react. American Chemical Society 2022-01-15 2022-05-09 /pmc/articles/PMC9092346/ /pubmed/35034452 http://dx.doi.org/10.1021/acs.jcim.1c01065 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Seidl, Philipp Renz, Philipp Dyubankova, Natalia Neves, Paulo Verhoeven, Jonas Wegner, Jörg K. Segler, Marwin Hochreiter, Sepp Klambauer, Günter Improving Few- and Zero-Shot Reaction Template Prediction Using Modern Hopfield Networks |
title | Improving Few- and Zero-Shot Reaction Template Prediction
Using Modern Hopfield Networks |
title_full | Improving Few- and Zero-Shot Reaction Template Prediction
Using Modern Hopfield Networks |
title_fullStr | Improving Few- and Zero-Shot Reaction Template Prediction
Using Modern Hopfield Networks |
title_full_unstemmed | Improving Few- and Zero-Shot Reaction Template Prediction
Using Modern Hopfield Networks |
title_short | Improving Few- and Zero-Shot Reaction Template Prediction
Using Modern Hopfield Networks |
title_sort | improving few- and zero-shot reaction template prediction
using modern hopfield networks |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9092346/ https://www.ncbi.nlm.nih.gov/pubmed/35034452 http://dx.doi.org/10.1021/acs.jcim.1c01065 |
work_keys_str_mv | AT seidlphilipp improvingfewandzeroshotreactiontemplatepredictionusingmodernhopfieldnetworks AT renzphilipp improvingfewandzeroshotreactiontemplatepredictionusingmodernhopfieldnetworks AT dyubankovanatalia improvingfewandzeroshotreactiontemplatepredictionusingmodernhopfieldnetworks AT nevespaulo improvingfewandzeroshotreactiontemplatepredictionusingmodernhopfieldnetworks AT verhoevenjonas improvingfewandzeroshotreactiontemplatepredictionusingmodernhopfieldnetworks AT wegnerjorgk improvingfewandzeroshotreactiontemplatepredictionusingmodernhopfieldnetworks AT seglermarwin improvingfewandzeroshotreactiontemplatepredictionusingmodernhopfieldnetworks AT hochreitersepp improvingfewandzeroshotreactiontemplatepredictionusingmodernhopfieldnetworks AT klambauergunter improvingfewandzeroshotreactiontemplatepredictionusingmodernhopfieldnetworks |