Cargando…

Improving Few- and Zero-Shot Reaction Template Prediction Using Modern Hopfield Networks

[Image: see text] Finding synthesis routes for molecules of interest is essential in the discovery of new drugs and materials. To find such routes, computer-assisted synthesis planning (CASP) methods are employed, which rely on a single-step model of chemical reactivity. In this study, we introduce...

Descripción completa

Detalles Bibliográficos
Autores principales: Seidl, Philipp, Renz, Philipp, Dyubankova, Natalia, Neves, Paulo, Verhoeven, Jonas, Wegner, Jörg K., Segler, Marwin, Hochreiter, Sepp, Klambauer, Günter
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9092346/
https://www.ncbi.nlm.nih.gov/pubmed/35034452
http://dx.doi.org/10.1021/acs.jcim.1c01065
_version_ 1784705121690583040
author Seidl, Philipp
Renz, Philipp
Dyubankova, Natalia
Neves, Paulo
Verhoeven, Jonas
Wegner, Jörg K.
Segler, Marwin
Hochreiter, Sepp
Klambauer, Günter
author_facet Seidl, Philipp
Renz, Philipp
Dyubankova, Natalia
Neves, Paulo
Verhoeven, Jonas
Wegner, Jörg K.
Segler, Marwin
Hochreiter, Sepp
Klambauer, Günter
author_sort Seidl, Philipp
collection PubMed
description [Image: see text] Finding synthesis routes for molecules of interest is essential in the discovery of new drugs and materials. To find such routes, computer-assisted synthesis planning (CASP) methods are employed, which rely on a single-step model of chemical reactivity. In this study, we introduce a template-based single-step retrosynthesis model based on Modern Hopfield Networks, which learn an encoding of both molecules and reaction templates in order to predict the relevance of templates for a given molecule. The template representation allows generalization across different reactions and significantly improves the performance of template relevance prediction, especially for templates with few or zero training examples. With inference speed up to orders of magnitude faster than baseline methods, we improve or match the state-of-the-art performance for top-k exact match accuracy for k ≥ 3 in the retrosynthesis benchmark USPTO-50k. Code to reproduce the results is available at github.com/ml-jku/mhn-react.
format Online
Article
Text
id pubmed-9092346
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-90923462022-05-11 Improving Few- and Zero-Shot Reaction Template Prediction Using Modern Hopfield Networks Seidl, Philipp Renz, Philipp Dyubankova, Natalia Neves, Paulo Verhoeven, Jonas Wegner, Jörg K. Segler, Marwin Hochreiter, Sepp Klambauer, Günter J Chem Inf Model [Image: see text] Finding synthesis routes for molecules of interest is essential in the discovery of new drugs and materials. To find such routes, computer-assisted synthesis planning (CASP) methods are employed, which rely on a single-step model of chemical reactivity. In this study, we introduce a template-based single-step retrosynthesis model based on Modern Hopfield Networks, which learn an encoding of both molecules and reaction templates in order to predict the relevance of templates for a given molecule. The template representation allows generalization across different reactions and significantly improves the performance of template relevance prediction, especially for templates with few or zero training examples. With inference speed up to orders of magnitude faster than baseline methods, we improve or match the state-of-the-art performance for top-k exact match accuracy for k ≥ 3 in the retrosynthesis benchmark USPTO-50k. Code to reproduce the results is available at github.com/ml-jku/mhn-react. American Chemical Society 2022-01-15 2022-05-09 /pmc/articles/PMC9092346/ /pubmed/35034452 http://dx.doi.org/10.1021/acs.jcim.1c01065 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Seidl, Philipp
Renz, Philipp
Dyubankova, Natalia
Neves, Paulo
Verhoeven, Jonas
Wegner, Jörg K.
Segler, Marwin
Hochreiter, Sepp
Klambauer, Günter
Improving Few- and Zero-Shot Reaction Template Prediction Using Modern Hopfield Networks
title Improving Few- and Zero-Shot Reaction Template Prediction Using Modern Hopfield Networks
title_full Improving Few- and Zero-Shot Reaction Template Prediction Using Modern Hopfield Networks
title_fullStr Improving Few- and Zero-Shot Reaction Template Prediction Using Modern Hopfield Networks
title_full_unstemmed Improving Few- and Zero-Shot Reaction Template Prediction Using Modern Hopfield Networks
title_short Improving Few- and Zero-Shot Reaction Template Prediction Using Modern Hopfield Networks
title_sort improving few- and zero-shot reaction template prediction using modern hopfield networks
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9092346/
https://www.ncbi.nlm.nih.gov/pubmed/35034452
http://dx.doi.org/10.1021/acs.jcim.1c01065
work_keys_str_mv AT seidlphilipp improvingfewandzeroshotreactiontemplatepredictionusingmodernhopfieldnetworks
AT renzphilipp improvingfewandzeroshotreactiontemplatepredictionusingmodernhopfieldnetworks
AT dyubankovanatalia improvingfewandzeroshotreactiontemplatepredictionusingmodernhopfieldnetworks
AT nevespaulo improvingfewandzeroshotreactiontemplatepredictionusingmodernhopfieldnetworks
AT verhoevenjonas improvingfewandzeroshotreactiontemplatepredictionusingmodernhopfieldnetworks
AT wegnerjorgk improvingfewandzeroshotreactiontemplatepredictionusingmodernhopfieldnetworks
AT seglermarwin improvingfewandzeroshotreactiontemplatepredictionusingmodernhopfieldnetworks
AT hochreitersepp improvingfewandzeroshotreactiontemplatepredictionusingmodernhopfieldnetworks
AT klambauergunter improvingfewandzeroshotreactiontemplatepredictionusingmodernhopfieldnetworks