Cargando…
DeepSCM: An efficient convolutional neural network surrogate model for the screening of therapeutic antibody viscosity
Predicting high concentration antibody viscosity is essential for developing subcutaneous administration. Computer simulations provide promising tools to reach this aim. One such model is the spatial charge map (SCM) proposed by Agrawal and coworkers (mAbs. 2015, 8(1):43–48). SCM applies molecular d...
Autor principal: | Lai, Pin-Kuang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9092385/ https://www.ncbi.nlm.nih.gov/pubmed/35832619 http://dx.doi.org/10.1016/j.csbj.2022.04.035 |
Ejemplares similares
-
Calculation of therapeutic antibody viscosity with coarse-grained models, hydrodynamic calculations and machine learning-based parameters
por: Lai, Pin-Kuang, et al.
Publicado: (2021) -
Machine learning prediction of antibody aggregation and viscosity for high concentration formulation development of protein therapeutics
por: Lai, Pin-Kuang, et al.
Publicado: (2022) -
Learning Perforce SCM
por: Cowham, Robert, et al.
Publicado: (2013) -
Evaluation of the SCM test
por: Atkinson, R.J., et al.
Publicado: (1984) -
Efficient derivation of chimeric-antigen receptor-modified T(SCM) cells
por: Kranz, Emiko, et al.
Publicado: (2022)