Cargando…

Anticancer Peptide Prediction via Multi-Kernel CNN and Attention Model

Background: Modern lifestyles mean that people are more likely to suffer from some form of cancer. As anticancer peptides can effectively kill cancer cells and play an important role in fighting cancer, they have been a subject of increasing research interest. Methods: This study presents a useful t...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Xiujin, Zeng, Wenhua, Lin, Fan, Xu, Peng, Li, Xinzhu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9092594/
https://www.ncbi.nlm.nih.gov/pubmed/35571059
http://dx.doi.org/10.3389/fgene.2022.887894
Descripción
Sumario:Background: Modern lifestyles mean that people are more likely to suffer from some form of cancer. As anticancer peptides can effectively kill cancer cells and play an important role in fighting cancer, they have been a subject of increasing research interest. Methods: This study presents a useful tool to identify the anticancer peptides based on a multi-kernel CNN and attention model, called ACP-MCAM. This model can automatically learn adaptive embedding and the context sequence features of ACP. In addition, to obtain better interpretability and integrity, we visualized the model. Results: Benchmarking comparison shows that ACP-MCAM significantly outperforms several state-of-the-art models. Different encoding schemes have different impacts on the performance of the model. We also studied tmethod parameter optimization. Conclusion: The ACP-MCAM can integrate multi-kernel CNN and self-attention mechanism, which outperforms the previous model in identifying anticancer peptides. It is expected that the work will provide new research ideas for anticancer peptide prediction in the future. In addition, this work will promote the development of the interdisciplinary field of artificial intelligence and biomedicine.